
Forcing the Π1
n-Uniformization Property

Stefan Hoffelner∗

27.03.2023

Abstract

We generically construct a model in which the Π1
3-uniformization

property is true, thus lowering the best known consistency strength
from the existence of M#

1 to just ZFC. The forcing construction can
be adapted to work over canonical inner models with Woodin cardinals,
which yields, for the first time, universes where the Π1

2n-uniformization
property holds, thus producing models which contradict the natural
PD-induced pattern.

1 Introduction

The question of finding nicely definable choice functions for a definable family
of sets is an old and well-studied subject in descriptive set theory. The
uniformization problem, first mentioned by N. Lusin in 1930 (see [14]), asks
to find choice functions which lie at the same projective level as the set
they aim to uniformize. Recall that for an A ⊂ 2ω × 2ω, we say that f
is a uniformization (or a uniformizing function) of A if there is a function
f : 2ω → 2ω, dom(f) = pr1(A) and the graph of f is a subset of A.

Definition 1.1. We say that a pointclass Γ has the uniformization property
iff every element of Γ admits a uniformization in Γ.

It is a classical result due to M. Kondo that lightface Π1
1-sets do have

the uniformization property, this also yields the uniformization property for
Σ1

2-sets. This is as much as ZFC can prove about uniformization. In the
constructible universe L, as shown by J. Addison in [2], Σ1

n does have the
uniformization property for n ≥ 3, which follows from the existence of a
Σ1

2-good wellorder of the reals, thus the Π1
n-uniformization fails for n ≥ 3.

On the other hand, by the celebrated results of Y. Moschovakis (see [19],
Theorem 1), ∆1

2n-projective determinacy implies Π1
2n+1-uniformization, yet

∗WWU Münster. Research funded by the Deutsche Forschungsgemeinschaft (DFG
German Research Foundation) under Germanys Excellence Strategy EXC 2044 390685587,
Mathematics Münster: Dynamics-Geometry-Structure.

1

the determinacy assumption exceeds in logical stength ZFC. It is known
due to H. W. Woodin (see [17],), that ∆1

2-projective determinacy implies
the existence of M#

1 , hence yields an inner model with a Woodin cardinal.
As with other regularity properties of the reals like Lebesgue measurability
or Baire property, which both follow from PD as well, it is natural to ask
whether the Π1

3-uniformization property bears large cardinal strength as well.
We shall answer it negatively.

Theorem. There is a generic extension of L in which the Π1
3-uniformization

property is true.

The proof can be adapted such that it applies to canonical inner models
with Woodin cardinals. This can be used to obtain better lower bounds in
terms of consistency strength for the Π1

n uniformization property for odd
n. For even n we can produce for the first time models where the Π1

n uni-
formization property holds true.

Theorem. Let Mn be the canonical inner model with n Woodin cardinals.
Then there is a generic extension of Mn in which the Π1

n+3 uniformization
property holds true.

Questions concerning the forcability of (local) consequences of PD do
have a long tradition in set theory. There is a vast body of literature con-
cerning the forcability of local levels of the projective hierarchy satisfying
(Boolean combinations of) the Baire property, the perfect set property or
Lebesgue measurability. There has been very little progress in the past,
however, concerning similar questions for the separation, the reduction and
the uniformization property. Indeed, even the question of whether one can
force the Σ1

3-separation property, which is the weakest of said properties,
remained an open problem for 50 years (see [15], Problem 3029).

This article continues this line of research and provides a natural end-
point to the work which started with [10]. It is organized as follows: in
the preliminaries section, we briefly introduce the forcings which we will use
in the proof and produce a generic extension W of L which will be a well-
suited ground model for our needs. We then start to prove the theorems
from above. The main idea is to turn the problem of finding a partial order
P which forces the Π1

3-property into a fixed point problem. We shall define a
derivation operator which acts on a specific set of forcing iterations of length
ω1. This operator will be applied transfinitely often, and will produce better
and better approximations to the set of forcings we actually want to use in
the end. The process is shown to converge in that eventually a fixed point
P, i.e. a suitable set of forcings is reached. Forcings which belong to this
fixed point P allow for a certain, seemingly self-referential definition of an
ω1-length iteration which forces the Π1

3-uniformization property overW . We
then follow up, to alter the said process such that it becomes applicable to
the canonical inner models Mn with n Woodin cardinals.

2

There are some similarities to [10], in particular the two proofs rely on
a similar ground model W , which is a generic extension of L, and use a
similar coding method which relies on a suitably chosen ω1-sequence of ω1-
Suslin trees. However a more straightforward application of the ideas of [10]
will fail badly to produce a model of the Π1

3-uniformization property. As
a consequence, a solution has to necessarily introduce several new ideas in
order to succeed. The presentation of those is the goal of this paper.

2 Preliminaries

2.1 Notation

The notation we use will be mostly standard, we hope. We write P = (Pα :
α < γ) for a forcing iteration of length γ with initial segments Pα. The α-th
factor of the iteration will be denoted with P(α). Note here that we drop
the dot on P(α), even though P(α) is in fact a Pα-name of a partial order.
If α′ < α < γ, then we write Pα′α to denote the intermediate forcing of P
which happens in the interval [α′, α), i.e. Pα′α is such that P ∼= Pα′ ∗ Pα′α.

We write Σn(X), for X an arbitrary set, to denote the set of formulas
which are Σn and use X as a parameter.

We write P ϕ whenever every condition in P forces ϕ, and make de-
liberate use of restricting partial orders below conditions, that is, if p ∈ P is
such that p ϕ, we let P′ := P≤p := {q ∈ P : q ≤ p} and use P′ instead
of P. This is supposed to reduce the notational load of some definitions and
arguments. We also sometimes write V [P] |= ϕ to indicate that for every
P-generic filter G over V , V [G] |= ϕ, and use V [P] to denote the generic
extension of V by P in case the particular choice of the generic filter does
not matter in the current context.

2.2 The forcings which are used

The forcings which we will use in the construction are all well-known. We
nevertheless briefly introduce them and their main properties.

Definition 2.1. (see [3]) For a stationary R ⊂ ω1 the club-shooting forcing
for R, denoted by PR consists of conditions p which are countable functions
from α+ 1 < ω1 to R which are increasing and continuous. PR is ordered by
end-extension.

The club shooting forcing PR is the paradigmatic example for an R-proper
forcing, where we say that P is R-proper if and only if for every condition
p ∈ P, every θ > 2|P| (we will utilize the common jargon and say in that
situation that θ is sufficiently large) and every countable M ≺ H(θ) such
that M ∩ω1 ∈ R and p,P ∈M , there is a q < p which is (M,P)-generic; and

3

a condition q ∈ P is said to be (M,P)-generic if q “Ġ∩M is an M -generic
filter”, for Ġ the canonical name for the generic filter. See also [8].

Lemma 2.2. Let R ⊂ ω1 be stationary, co-stationary. Then the club-
shooting forcing PR generically adds a club through the stationary set R ⊂ ω1.
Additionally PR is R-proper, ω-distributive and hence ω1-preserving. More-
over R and all its stationary subsets remain stationary in the generic exten-
sion.

Once we decide to shoot a club through a stationary, co-stationary subset
of ω1, this club will belong to all ω1-preserving outer models. Using an
antichain R = (Rα : α < ω1) in the Boolean algebra P (ω1)/NSω1 , the
club shooting forcing thus becomes a tool of coding up arbitrary ℵ1-sized
information relative to R. The following method is well-known and has been
used already several times (see e.g. [6]).

Lemma 2.3. Let (Rα : α < ω1) be a partition of ω1 into ℵ1-many stationary
sets. Let r ∈ 2ω1 be arbitrary, and set

X :=
⋃
{R2α : α such that r(α) = 1} ∪

⋃
{R2α+1 : α such that r(α) = 0}

and Y the complement of X which is

Y :=
⋃
{R2α+1 : α such that r(α) = 1} ∪

⋃
{R2α : α such that r(α) = 0}.

Then forcing with PY will create a universe where the information r is coded
into (Rα : α < ω1) in the following way: in V [PY] it holds that ∀α < ω1 :

r(α) = 1 if and only if R2·α is nonstationary,

and
r(α) = 0 iff R(2·α)+1 is nonstationary.

Proof. Forcing with PY will join a club to Y , so every stationary subset
of X = ω1\Y becomes nonstationary and as a consequence we get that if
r(α) = 1, then R2α is nonstationary and that if r(α) = 0, then R2α+1 is
nonstationary.

On the other hand, if R2α is nonstationary then r(α) can not be 0, as
otherwise the stationarity of R2α ⊂ Y would be preserved by the last Lemma.
The same line of reasoning also shows that if R2α+1 is nonstationary, then
r(α) can not be 1, which ends the proof.

The second forcing we use is the almost disjoint coding forcing due to R.
Jensen and R. Solovay. We will identify subsets of ω with their characteristic
function and will use the word reals for elements of 2ω and subsets of ω
respectively. Let D = {dα α < ℵ1} be a family of almost disjoint subsets

4

of ω, i.e. a family such that if r, s ∈ D then r ∩ s is finite. Let X ⊂ κ for
κ ≤ 2ℵ0 be a set of ordinals. Then there is a ccc forcing, the almost disjoint
coding AD(X) which adds a new real x which codes X relative to the family
D in the following way

α ∈ X if and only if x ∩ dα is finite.

Definition 2.4. The almost disjoint coding AD(X) relative to an almost
disjoint family D consists of conditions (r,R) ∈ [ω]<ω × D<ω and (s, S) <
(r,R) holds if and only if

1. r ⊂ s and R ⊂ S.

2. If α ∈ X and dα ∈ R then r ∩ dα = s ∩ dα.

We shall briefly discuss the L-definable, ℵL1 -sized almost disjoint family
of reals D we will use throughout this article. The family D is the canonical
almost disjoint family one obtains when recursively adding the <L-least dβ ⊂
ω such that dβ is almost disjoint from all the previous dα, α < β.

The last two forcings we briefly discuss are Jech’s forcing for adding a
Suslin tree with countable conditions and, given a Suslin tree T , the as-
sociated forcing which adds a cofinal branch through T . Recall that a set
theoretic tree (T,<) is a Suslin tree if it is a normal tree of height ω1 and has
no uncountable antichain. As a result, forcing with a Suslin tree S, where
conditions are just nodes in S, and which we always denote with S again,
is a ccc forcing of size ℵ1. Jech’s forcing to generically add a Suslin tree is
defined as follows.

Definition 2.5. Let J be the forcing whose conditions are countable, nor-
mal trees ordered by end-extension, i.e. T1 < T2 if and only if ∃α <
height(T1)T2 = {t � α : t ∈ T1}

It is wellknown that J is σ-closed and adds a Suslin tree. In fact more
is true, the generically added tree T has the additional property that for
any Suslin tree S in the ground model S × T will be a Suslin tree in V [G].
This can be used to obtain a robust coding method (see also [9] for more
applications)

Lemma 2.6. Let V be a universe and let S ∈ V be a Suslin tree. Let J ∈ V
be Jech’s forcing for adding a Suslin tree and let G be J-generic over V and
assume that T =

⋃
p∈G p is the generic tree. Then forcing with T ∈ V [G]

does preserve S, i.e. if H is T -generic over W [G] we have that

V [G][H] |= S is Suslin.

Proof. Let Ṫ be the J-name for the generic Suslin tree. We claim that J ∗ Ṫ
has a dense subset which is σ-closed. As σ-closed forcings will always preserve

5

ground model Suslin trees, this is sufficient. To see why the claim is true
consider the following set:

{(p, q̌) : p ∈ J ∧ height(p) = α+ 1 ∧ q̌ is a node of p of level α}.

It is easy to check that this set is dense and σ-closed in J ∗ Ṫ .

A similar observation shows that a we can add an ω1-sequence of such
Suslin trees with a countably supported iteration.

Lemma 2.7. Let S be a Suslin tree in V and let P be a countably supported
product of length ω1 of forcings J with G its generic filter. Then in V [G]
there is an ω1-sequence of Suslin trees ~T = (Tα : α ∈ ω1) such that for any
finite e ⊂ ω the tree S ×

∏
i∈e Ti will be a Suslin tree in V [G].

These sequences of Suslin trees will be used for coding in our proof and
get a name.

Definition 2.8. Let ~T = (Tα : α < κ) be a sequence of Suslin trees. We say
that the sequence is an independent family of Suslin trees if for every finite
set e = {e0, e1, ..., en} ⊂ κ, the product Te0 × Te1 × · · · × Ten is a Suslin tree
again, provided the ei’s are pairwise different.

We will use the following preservation result due to Miyamoto (see [16])

Theorem 2.9. Let P = (P(β) : β < δ) be a countable support iteration
of proper forcings, let S be Suslin tree and assume that for every β < δ,
Pβ “P(β) preserves S as a Suslin tree.” Then S remains a Suslin tree in
the generic extension by P.

2.3 The ground model W of the iteration

We have to first create a suitable ground model W over which the actual
iteration will take place. W will be a generic extension of L, satisfying CH
and has the crucial property that in W there is an ω1-sequence ~S of ω1

trees which are an independent sequence of Suslin trees in the inner model
L[~S] ⊂W and is Σ1(ω1)-definable over H(ω2)W . The sequence ~S will enable
a coding method which is to some extent not depending on the surrounding
universe, a feature we will exploit to a great extent in the upcoming.

In short, we will construct W in three steps. In the first step we gener-
ically add ω1-many Suslin trees denoted by ~S. In the second step we sub-
sequently destroy all trees ~S via adding a cofinal ω1-branch through every
element of ~S. In a third step we use a club adding forcing, which will make
the sequence ~S Σ1(ω1)-definable over the resulting universe. We will later use
a coding forcing over W , which will code up some well-chosen ω1-branches
through ~S using almost disjoint coding forcing.

6

Turning to the detailed definition ofW , we start with Gödels constructible
universe L as our ground model. Recall that L comes equipped with a Σ1-
definable, global well-order <L of its elements. We first fix an appropriate
sequence of stationary, co-stationary subsets of ω1 using Jensen’s♦-sequence.

Fact 2.10. In L there is a sequence (aα : α < ω1) of countable subsets
of ω1 such that any set A ⊂ ω1 is guessed stationarily often by the aα’s,
i.e. {α < ω1 : aα = A ∩ α} is a stationary subset of ω1. The sequence
(aα : α < ω1) can be defined in a Σ1 way over the structure Lω1.

Proof. We shall only prove the claim about the Σ1-definability and follow
Jensen’s original construction of the ♦-sequence. We define a sequence of
pairs (aα, cα) by induction on α. If α = β + 1, then aα = cα = α. If α is a
limit ordinal, then (aα, cα) is the <L-least pair such that cα is a closed and
unbounded subset of α, aα ⊂ α and such that aα ∩ η 6= aη for every η ∈ cα,
provided such a pair exists. Otherwise let aα = cα = α. It is well-known
that the aα’s defined this way form a ♦-sequence. We let φ(α, x) denote the
statement: “x is the α-th entry of the ♦-sequence defined as above”.

Now it is straightforward to check that Lω1 is sufficient to correctly com-
pute the sequence ((aα, cα) : α < ω1) in a Σ1-way. Indeed Lω1 can correctly
compute Lβ , for β < ω1 with a Σ1-formula. The latter structures, provided
β is a limit ordinal, are able to define the <L-wellorder up to their respec-
tive ordinal height. Thus if the countable Lβ , β a limit ordinal, contains
((aα, cα : α < γ), for some γ < β, then Lβ will correctly compute (aγ , cγ)
as <L and being closed and unbounded in some α < β are absolute notions
between Lβ and L. Consequentially, being aα is Σ1(α)-definable over Lω1

x = aα ⇔ ∃β(β is a limit ordinal and Lβ |= φ(α, x)

and x ∈ {aα : α < ω1} if and only if ∃α(x = aα), which gives the claim.

The ♦-sequence can be used to produce an easily definable sequence of
L-stationary, co-stationary subsets of ω1: we list the reals in L in an ω1

sequence (rα : α < ω1), and let r̃α ⊂ ω1 be the unique element of 2ω1 which
copies rα on its first ω-entries followed by ω1-many 0’s. Then, identifying
r̃α ∈ 2ω1 with the according subset of ω1, we define for every β < ω1 a
stationary, co-stationary set in the following way:

R′β := {α < ω1 : aα = r̃β ∩ α}.

That each R′β is stationary is clear by the definition of the ♦-sequence, it is
also co-stationary as ω1\R′β necessarily must contain (modulo a set bounded
in ω1) the stationaryR′γ , for γ 6= α. It is clear that ∀α 6= β(R′α∩R′β ∈ NSω1)
and we obtain a sequence of pairwise disjoint stationary sets as usual via
setting for every β < ω1

Rβ := R′β\ω.

and let ~R = (Rα : α < ω1). We derive the following standard result

7

Lemma 2.11. For any β < ω1, membership in Rβ is uniformly Σ1-definable
over the model Lω1 , i.e. there is a Σ1-formula ψ(v0, v1) such that for every
β < ω1, (α ∈ Rβ ⇔ Lω1 |= ψ(α, β)).

Proof. First we note that there is a Σ1-formula θ′(η, x) for which Lω1 |=
θ′(η, x) is true if and only if “x is the η-th real in <L, the canonical L-
wellorder”. It follows that there is a Σ1-formula θ(η, ζ, x) for which Lω1 |=
θ(η, ζ, x) is true if and only if “x equals r̃η ∩ ζ”. Further recall that in the
proof of the last lemma we found already a Σ1-formula, let us denote it with
ϕ(ξ, y), such that Lω1 |= ϕ(ξ, y) holds if and only if “y is the ξ-th element of
the canonical ♦-sequence”.

Then membership in R′β can be expressed using the following formula:

α ∈ R′β ⇔ Lω1 |= ∃x(ϕ(α, x) ∧ θ(β, α, x))

Note here that actually every countable Lγ , for γ a limit ordinal, which
models (a sufficiently big fragment of) ZF− and contains α and β is sufficient
to witness membership of α in R′β using the formula ∃x(ϕ(α, x)∧θ(β, α, x)).

It follows that membership in Rβ allows this representation:

α ∈ Rβ ⇔ Lω1 |=∃x(ϕ(α, x) ∧ θ(β, α, x)) ∧ α /∈ ω

Note that the last formula is Σ1, thus we found our desired ψ(v0, v1).

We proceed with defining the universeW . Starting with L as the ground
model we generically add ℵ1-many Suslin trees using of Jech’s Forcing J ∈ L.
We let

Q0 :=
∏
β∈ω1

J

using countable support. This is a σ-closed, hence proper notion of forcing.
In particular the stationarity of every Rα ∈ L is preserved. We denote the
generic filter of Q0 with ~S = (Sα : α < ω1) and note that by Lemma 2.7
~S is independent. We fix a definable bijection between [ω1]ω and ω1 and
identify the trees in (Sα : α < ω1) with their images under this bijection, so
the trees will always be subsets of ω1 from now on.

In a second step we destroy all the just added Suslin trees via adding
cofinal branches through each S ∈ ~S using countable support again. That
is, if we let Sβ also denote the partial order when using the nodes of Sβ as
conditions, then we define

Q1 :=
∏
β∈ω1

Sβ.

We note that we can rearrange the iteration Q0∗Q1 and write it asFβ<ω1(J∗
Sβ) =

∏
β<ω1

(J ∗ Sβ), using countable support again. Now by the argument
of the proof of Lemma 2.6, each factor J ∗ Sβ has a dense subset which is
σ-closed. So the two step iteration Q0 ∗Q1 has itself a dense subset which is

8

σ-closed. In particular Q0 ∗Q1 does not add any reals and is proper, hence
preserves stationary subsets.

In a third step, working in L[Q0][Q1], we code the trees from ~S into the
sequence of L-stationary subsets ~R we produced earlier, using the method
introduced in Lemma 2.3. It is important to note, that the forcing we are
about to define does preserve Suslin trees, a fact we will show later. The
forcing used in the third step will be denoted by Q2. Fix first a definable
bijection h ∈ Lω2 between ω1 × ω1 and ω1 and write ~R from now on in
ordertype ω1 · ω1 making implicit use of h, so we assume that ~R = (Rα :
α < ω1 · ω1).

The third forcing Q2 is defined over L[Q0][Q1] as follows. We fix an
arbitrary α < ω1 and let Sα ⊂ ω1 be the α-th Suslin tree in ~S. Then we fix
the α-th ω1-block of ~R and let

Eα :=
⋃
{Rω1α+2β+1 : β such that Sα(β) = 1}∪⋃
{Rω1α+2β : β such that Sα(β) = 0}.

Then we let
E :=

⋃
α<ω1

Eα

and define
Q2 := PE

i.e. we shoot a club through E ⊂ ω1.
This way we can turn the generically added sequence of Suslin trees ~S into

a definable sequence of Suslin trees using the ω-distributive forcing Q2 = PE .
Indeed, if we work in L[~S ∗~b∗G], where ~S ∗~b∗G is Q0 ∗Q1 ∗Q2-generic over
L, then, as seen in Lemma 2.3

∀α, γ < ω1(γ ∈ Sα ⇔ Rω1·α+2·γ is not stationary and
γ /∈ Sα ⇔ Rω1·α+2·γ+1 is not stationary)

Note here that the above formula can be used to make every Sα Σ1(ω1, α)
definable over L[~S ∗G], which in turn yields the following lemma.

Lemma 2.12. The sequence ~S is Σ1(ω1)-definable over L[~S ∗G].

Proof. We claim that already ℵ1-sized, transitive models of ZF− which con-
tain a club through the complement of exactly one element of every pair
{(Rα, Rα+1) : α < ω1} are sufficient to compute correctly ~S via the follow-
ing Σ1(ω1)-formula:

9

Ψ(X,ω1) ≡ ∃M(M transitive ∧M |= ZF− ∧ ω1 ∈M∧
M |= ∀β < ω1 · ω1(either R2β or R2β+1 is nonstationary) ∧
M |= X is an ω1 · ω1-sequence (Xα)α<ω1·ω1 of subsets of ω1∧
M |= ∀α, γ(γ ∈ Xα ⇔ Rω1·α+2·γ is not stationary and

γ /∈ Xα ⇔ Rω1·α+2·γ+1 is not stationary)

We want to show that X = ~S if and only if Ψ(X,ω1) is true in L[~S ∗G]. For
the backwards direction, we assume that M is a model and X ∈M is a set,
as on the right hand side of the above. We shall show that indeed X = ~S.
As M is transitive and a model of ZF− it will compute every Rβ , β < ω1

correctly by Lemma 2.11. As being nonstationary is a Σ1(ω1)-statement,
and hence upwards absolute, we conclude that if M believes to see a pattern
written into (its versions of) the Rβ ’s, this pattern is exactly the same as is
seen by the real world L[~S ∗G]. But we know already that in L[~S ∗G], the
sequence ~S is written into the Rβ ’s, thus X = ~S follows.

On the other hand, if X = ~S, then

L[~S ∗G] |= ∀β < ω1 · ω1(either R2β or R2β+1 is nonstationary)

L[~S ∗G] |= X is an ω1 · ω1-sequence (Xα)α<ω1·ω1 of subsets of ω1

and

L[~S ∗G] |= ∀α, γ < ω1(γ ∈ Xα ⇔Rω1·α+2·γ is not stationary and
γ /∈ Xα ⇔Rω1·α+2·γ+1 is not stationary)

By reflection, there is an ℵ1-sized, transitive model M which models the
assertions above, which gives the direction from left to right.

Let us set
W := L[Q0 ∗Q1 ∗Q2]

which will serve as our ground model for an iteration of length ω1.
Our goal is to use ~S for coding again. For this it is essential, that the

sequence remains independent in L[Q0 ∗ Q2] (note here that Q1, i.e. the
forcing which destroys each element from ~S is missing here). First note that
Q0 ∗Q1 ∗Q2 is in fact of the form Q0 ∗ (Q1 ×Q2), so considering Q0 ∗Q2 is
reasonable.

To see the preservation of Suslin trees in L[Q0 ∗Q2] we shall argue that
forcing with Q2 over L[Q0] preserves Suslin trees. The following line of rea-
soning is similar to arguments in [9]. Recall that for a forcing P, θ sufficiently
large and regular and M ≺ H(θ), a condition q ∈ P is (M,P)-generic iff for
every maximal antichain A ⊂ P, A ∈ M , it is true that A ∩M is predense

10

below q. In the following we will write Tη to denote the η-th level of the tree
T and T � η to denote the set of nodes of T of height < η. The key fact is
the following (see [16] for the case where P is proper)

Lemma 2.13. Let T be a Suslin tree, R ⊂ ω1 stationary and P an R-proper
poset. Let θ be a sufficiently large cardinal. Then the following are equivalent:

1. P T is Suslin

2. if M ≺ Hθ is countable, η = M ∩ ω1 ∈ R, and P and T are in M ,
further if p ∈ P∩M , then there is a condition q < p such that for every
condition t ∈ Tη, (q, t) is (M,P× T)-generic.

Proof. For the direction from left to right note first that P T is Suslin
implies P T is ccc, and in particular it is true that for any countable ele-
mentary submodel N [ĠP] ≺ H(θ)V [ĠP], P ∀t ∈ T (t is (N [ĠP], T)-generic).
Now if M ≺ H(θ) and M ∩ ω1 = η ∈ R and P, T ∈ M and p ∈ P ∩M then
there is a q < p such that q is (M,P)-generic. So q ∀t ∈ T (t is (M [ĠP], T)-
generic, and this in particular implies that (q, t) is (M,P×T)-generic for all
t ∈ Tη.

For the direction from right to left assume that Ȧ ⊂ T is a maximal
antichain. Let B = {(x, s) ∈ P × T : x P š ∈ Ȧ}, then B is a predense
subset in P × T . Let θ be a sufficiently large regular cardinal and let M ≺
H(θ) be countable such that M ∩ ω1 = η ∈ R and P, B, p, T ∈ M . By
our assumption there is a q <P p such that ∀t ∈ Tη((q, t) is (M,P × T)-
generic). So B ∩M is predense below (q, t) for every t ∈ Tη, which yields
that q P ∀t ∈ Tη∃s <T t(s ∈ Ȧ) and hence q Ȧ ⊂ T � η, so P T is
Suslin.

Lemma 2.14. Let R ⊂ ω1 be stationary, co-stationary, then the club shoot-
ing forcing PR preserves Suslin trees.

Proof. Let T be an arbitrary Suslin tree from the ground model V . Because
of Lemma 2.13, it is enough to show that for any regular and sufficiently large
θ, everyM ≺ Hθ withM∩ω1 = η ∈ R, and every p ∈ PR∩M there is a q < p
such that for every t ∈ Tη, (q, t) is (M, (PR × T))-generic. Note first that,
as T is Suslin, every node t ∈ Tη is an (M,T)-generic condition. Further,
as forcing with a Suslin tree is ω-distributive, (H(ω1))M [G] = (H(ω1))M for
every T -generic filter G over V . As PR ⊂ H(ω1), we obtain that the set
M [G] ∩ PR is independent of the choice of the generic filter G and equals
M ∩ PR. Likewise M [G] ∩ ω1 = M ∩ ω1, for every T -generic filter.

Next we note that for a countable M and a V -generic filter G ⊂ T , the
modelM [G] is (up to isomorphism) uniquely determined by the t ∈ Tη, such
that t ∈ G and η = M ∩ ω1. This is clear as we can transitively collapse
M [G] to obtain a structure of the form M̄ [t], where M̄ is the image of M
under the collapse map and t ∈ Tη is the unique node in T to which G is

11

sent to by the collapse map. So for a countable M ≺ H(θ), and η = M ∩ω1,
we write M [t] for the unique model of the form M [G], for G T -generic over
V and t ∈ G ∩ Tη. With an argument almost identical to the one used in
the proof of Lemma 2.2 it is not hard to see that if M ≺ H(θ) is such that
M ∩ ω1 ∈ R then an ω-length descending sequence of PR-conditions in M
whose domains converge to M ∩ ω1 has a lower bound as M ∩ ω1 ∈ R.

We construct an ω-sequence of elements of PR which has a lower bound
which will be the desired condition q such that for every t ∈ Tη, (q, t) is
(M,PR × T)-generic. We list the nodes on Tη, (ti : i ∈ ω) and consider
the according generic extensions M [ti]. In every M [ti] we list the PR-dense
subsets of M [ti], (Dti

n : n ∈ ω), write the so listed dense subsets of M [ti]
as an ω × ω-matrix and enumerate this matrix in an ω-length sequence of
dense sets (Di : i ∈ ω). If p = p0 ∈ PR ∩M is arbitrary we can find, using
the fact that ∀i (PR ∩M [ti] = M ∩ PR), an ω-length, descending sequence
of conditions below p0 in PR ∩M , (pi : i ∈ ω) such that pi+1 ∈ M ∩ PR
is in Di. By the usual density argument we can conclude that the domain
of the conditions pi converge to M [ti] ∩ ω1 = M ∩ ω1. Then the pi’s have
a lower bound q = pω ∈ PR, namely q =

⋃
i∈ω pi ∪ {(η, η)} and (t, q) is an

(M,T × PR)-generic condition for every t ∈ Tη as any t ∈ Tη is (M,T)-
generic and every such t forces that q is (M [T],PR)-generic; moreover q < p
as desired.

We add a second proof of the last lemma, which is more straightforward
at the cost of being less general.

Proof. Let T be a Suslin tree from the ground model V . We assume for a
contradiction that there is a condition p ∈ PR and a PR-name Ȧ such that

p “Ȧ ⊂ Ť is a maximal uncountable antichain”

We let M ≺ H(θ), |M | = ℵ0, where θ is an arbitrary regular cardinal
greater than 2ℵ1 . Additionally we demand that {Ȧ,PR, p} ⊂ M and, if we
let δ := M ∩ ω1, we demand that δ ∈ R ⊂ ω1. The latter is possible as
{M ∩ ω1 : M ≺ H(θ) ∧ {Ȧ,PR, p} ⊂M} forms a club in ω1, hence hits the
stationary R. We know that

M |= p “Ȧ ⊂ Ť is a maximal antichain”

hence, if we let M̄ denote the transitive collapse of M and π : M → M̄ be
the collapsing map,

M̄ |= p “π(Ȧ) ⊂ π(Ť) = Ť ∩ δ is a maximal antichain”

Stepping outside of M̄ , we list the elements of T ∩ δ as (tn : n ∈ ω).
Starting with p =: p0 we recursively define a descending sequence of PR-
conditions (pn : n ∈ ω) such that for every n ∈ ω, there is a an ∈ T ∩ δ such

12

that pn+1 “ǎn ∈ Ȧ and ǎn and tn are compatible in T”. The sequence
(pn : n ∈ ω) can be chosen such that supn∈ω(max (pn)) = δ ∈ R. Hence
there will be a lower bound pω ∈ PR for (pn : n ∈ ω) in V . The lower bound
pω will satisfy that there is a set B ⊂ T in V , namely B = {an : n ∈ ω}
such that

pω “B̌ is a maximal antichain in Ť ∩ δ”

and by absoluteness of the statement “B̌ is a maximal antichain in Ť ∩ δ”,
we obtain that

V |= B is a maximal antichain in T ∩ δ”.

As T is a Suslin tree, hence in particular a normal tree, we obtain that the
δ-th level of T , denoted by Tδ, seals off B, i.e. for every a ∈ B there is
a ta ∈ Tδ such that a <T tδ. But this implies that B remains a maximal
antichain in T , hence pω “B̌ = Ȧ∧ |B̌| = ℵ0”, which shows that PR forces
that every antichain of Ť is countable, hence T remains Suslin after forcing
with PR as claimed.

If we let A ⊂ ω1 be an arbitrary subset in L[Q0][Q2] and if we let Q1
A :=∏

β∈A Sβ , and finally if α /∈ A, then by the above we know that Sα is still a
Suslin tree in L[Q0][Q2][Q1

A]. Thus we can freely add ω1-branches through
some elements ~S whose index belongs to a set A ⊂ ω1, and add them to
L[Q0][Q2] without interfering with the Suslinity of all the other trees of ~S
whose index is not in A. We summarize the last results to:

Theorem 2.15. The universe W = L[Q0][Q1][Q2] is an ω-distributive, ℵ2-
preserving generic extension of L and contains ~S which is an independent
sequence of Suslin trees over L[Q0 ∗Q2]. However no tree from ~S is Suslin in
W . Moreover ~S is Σ1(ω1)-definable over W . If we let A ⊂ ω1 be an arbitrary
set in L[Q0 ∗Q2] and if (bβ ⊂ Sβ : β ∈ A) is a sequence of Q1

A-generic filters
over L[Q0][Q2], (i.e. generically added ω1-branches) then for every α /∈ A,
L[Q0][(bβ ⊂ Sβ : β ∈ A][Q2] |= “Sα is a Suslin tree”.

We end with a straightforward lemma which is used later in coding ar-
guments.

Lemma 2.16. Let T be a Suslin tree and let AD(X) be the almost disjoint
coding which codes a subset X of ω1 into a real with the help of an almost
disjoint family of reals D of size ℵ1. Then

AD(X) T is Suslin

holds.

Proof. This is clear as AD(X) has the Knaster property, thus the product
AD(X)× T is ccc and T must be Suslin in V [AD(X)].

13

3 Main Proof

3.1 Informal discussion of the idea

As the proof we aim for will be rather technical we want to discuss first
some ideas which are used on an informal level. We shall concentrate on
uniformizing one Π1

3 set Am. This is actually sufficient, as Am could be
the universal Π1

3 set. If we fix a real x and consider its (assumed to be)
non-empty x-section of Am, denoted by Am,x, then our goal is to single out
exactly one real y such that (x, y) is the value of our uniformizing function
f(m,x). We shall aim to make the graph of f(m, ·) Π1

3-definable. This will
be accomplished via coding every pair (x, y′) which is not (x, f(m,x)) into
the independent sequence of Suslin trees ~S. We will see that “being coded
into the ~S”-sequence is a Σ1

3-property, thus not being coded into ~S is Π1
3 and

if we can arrange that, for every x, (x, f(m,x)) is the unique pair of Am,x
which is not coded into the ~S-sequence, then indeed, we would have found a
uniformizing function whose graph is Π1

3, as desired.
The problem is of course, that coding reals into ~S means extending the

universe, therefore the Π1
3 set Am will change, and the value f(m,x) we chose,

could end up not being an element of Am anymore, while Am,x remains non-
empty. In that situation, our attempt to create a Π1

3 uniformizing function
has failed. A closer inspection might lead to the impression that the task of
determining for every real x a real y such that (x, y) will remain in Am even
after we coded every other pair into ~S is hopeless. Indeed it is e.g. easy to
design a Π1

3-set Ak, such that Ak,x consists of exactly two points y0 and y1

and deciding to set f(k, x) = y0, therefore coding up (x, y1) will kick (x, y0)
out of Ak, while setting f(k, x) = y1 and consequentially coding up (x, y0)
immediately kicks (x, y1) out of Ak. This toy example can be extended to
sets with infinite sections. It is also possible to construct two Π1

3-sets Ak and
Al for which a setting a value for f(k, x) will kick out the value f(l, x) of Al
and so on.

The idea to solve these issues, is to turn the problem into a fixed point
problem. We start with a base set of iterations, which we call allowable. If
we consider a pair (x, y) ∈ Am for which we know that it can not be forced
out of Am with an allowable forcing, then it is safe to set f(m,x) := y, as
long as we continue our iteration with an allowable forcing.

This reasoning yields a new set of rules for an iteration, and these new
rules determine a subcollection of allowable forcings called 1-allowable. We
can repeat this, via asking for a pair (x, y) ∈ Am, whether there is an allow-
able P such that after using P, (x, y) can not be kicked out of Am with an
1-allowable forcing. These rules will form the 2-allowable forcings and so on.

These collections will be shrinking, but always non-empty, therefore they
will stabilize, giving rise to a set we call ∞-allowable forcings. This is the
right collection of forcings we want to use, and we start an iteration consisting

14

entirely of ∞-allowable factors, where we set values f(m,x) = y whenever a
pair (x, y) can not be kicked out of Am and f(m,x) has not been defined yet;
and otherwise use an ∞-allowable forcing which witnesses that (x, y) can be
forced out of Am with an ∞-allowable forcing. As ∞-allowable forcings are
a fixed point under the derivation operator we roughly described above, this
iteration will yield an ∞-allowable iteration again. So all the values we set
for f(m, ·) are safe, in that (x, f(m,x)) remains in Am throughout the whole
iteration. This ends a rough description of how the proof is set up.

3.2 ∞-allowable Forcings

We continue with the construction of the appropriate notions of forcing which
we want to use in our proof. The goal is to iteratively shrink the set of
notions of forcing we want to use until we reach a fixed point. All forcings
will belong to a certain class, which we call allowable. These are just forcings
which iteratively code reals into ω1-many ω-blocks of Suslin trees from ~S.
To ensure some symmetry, we demand that the set of the ω1-many ω-blocks
is added by the usual ω1-Cohen forcing, but computed as in L. This trick is
inspired by the coding from [7], where they dub the places where the coding
is happening as coding areas. Upshot of this coding method is to ensure,
while being quite easy to define, that products of the coding are themselves
a coding forcing.

3.2.1 Coding reals in inner models of W

Our ground model shall be W . Let x, y ∈ W be reals, let m ∈ ω and let
γ < ω1 be an arbitrary ordinal. In the following we will write (x, y,m) for
the real which recursively codes up x, y and m, using some fixed recursive
coding. We will consider an inner model L[Q0][Q2][(bn : n ∈ ω)] of W ,
which we assign to (x, y,m), which sees that the triple (x, y,m) is coded into
the ~S at the γ-th ω-block, and moreover sees no other reals coded this way.
We shall define L[Q0][Q2][(bn : n ∈ ω)] now.

First we collect the ω-many ω1-branches (bγ+n ⊂ Sγ+n : n ∈ ω) to write
the characteristic function of (x, y,m) into the γ-th ω block of ~S. To be more
specific, if b′β denotes the <-least cofinal Sβ-generic branch, which exists in
W , then we let

bγ+n :=

{
b′ωγ+2n if (x, y,m)(n) = 0

b′ωγ+2n+1 if (x, y,m)(n) = 1

This way, working over L[Q0][Q2][(bγ+n : n ∈ ω)], we can read off (x, y,m)

via looking at the ω-block of ~S-trees starting at γ and evaluate which tree
in the ω-block has been destroyed.

15

Lemma 3.1. Using the objects as defined in the discussion above. In the
universe L[Q0][Q2][(bγ+n : n ∈ ω)] the real (x, y,m) ∈ W can be defined
using the following formula with one free variable v0, (∗)γ(v0) which is, over
L[Q0][Q2][(bγ+n : n ∈ ω)], equivalent to a Σ1(γ, ω1, v0)-formula.

(∗)γ((x, y,m))⇔ n ∈ (x, y,m) if and only if Sω·γ+2n+1 has an ω1-branch,
and n /∈ (x, y,m) if and only if Sω·γ+2n has an ω1-branch.

Proof. Let us define first the forcing P(x,y,m,γ) for which the sequence (bγ+n :
n ∈ ω) is a generic filter over L[Q0][Q2]. The forcing P(x,y,m,γ) is defined over
L[Q0][Q2] as a countably (i.e. fully) supported ω-length product which writes
the characteristic function of (x, y,m) into the γ-th ω block of ~S. To be more
specific, the n-th factor of P(x,y,m,γ) denoted by P(x,y,m,γ)(n) is defined by

P(x,y,m,γ)(n) =

{
Sωγ+2n if (x, y,m)(n) = 0

Sωγ+2n+1 if (x, y,m)(n) = 1

Note that P(x,y,m,γ) is a regular subforcing ofQ1 ∈ L[Q0][Q2], which consisted
of adding cofinal branches through every tree in ~S. It is clear now that the
sequence of the bn’s is generic for P(x,y,m,γ) over L[Q0][Q2].

We shall prove the Lemma now and work over L[Q0][Q2][(bn : n ∈ ω)].
Assume first that n ∈ (x, y,m) i.e. (x, y,m)(n) = 1. Then, by defini-
tion, P(x,y,m,γ)(n) = Sωγ+2n+1, thus Sωγ+2n+1 adds generically an ω1-branch
through the tree Sωγ+2n+1. As Sωγ+2n+1 is a subforcing of P(x,y,m,γ), and as
the existence of an ω1-branch through Sωγ+2n+1 is upwards absolute between
universes of the same ℵ1, we obtain that indeed, L[Q0][Q2][(bn : n ∈ ω)] |=
“Sω·γ+2n+1 has an ω1-branch”. The proof for the case when n /∈ (x, y,m) is
similar.

On the other hand, if Sωγ+2n+1 is not a Suslin tree in L[Q0][Q2][(bn :
n ∈ ω)], then we shall show that we must have used the forcing Sωγ+2n+1 at
stage n in P(x,y,m,γ). Indeed, we claim that the forcing Q :=

∏
m 6=2n+1 Sωγ+m

using countable support preserves the Suslin tree Sωγ+2n+1. This is suffi-
cient, as P(x,y,m,γ) is a subforcing of Q, and if Sωγ+2n+1 remains Suslin in
L[Q0][Q2][Q], it surely must be Suslin in L[Q0][Q2][(bn : n ∈ ω)]. To see
that Sωγ+2n+1 is Suslin in L[Q0][Q2][Q], note that every factor of it preserves
that Sωγ+2n+1 is Suslin and so the countable support must do so as well by
theorem 2.9.

So, indeed if Sωγ+2n+1 is not a Suslin tree in L[Q0][Q2][(bn : n ∈ ω)], we
must have used Sωγ+2n+1 at stage n in P, which means that (x, y,m)(n) = 1,
as claimed. Again, the dual case when Sωγ+2n has an ω1-branch is similar.

We proceed to show that (∗)γ(v0) is, over L[Q0][Q2][(bn : n ∈ ω)], equiv-
alent to a Σ1(γ, ω1, v0)-formula. First note that, as just shown, P is a proper
generic extension of L[Q0][Q2], which in particular means that the pattern of
stationary, non-stationary members of (Rα : α < ω1 ·ω1) remains untouched

16

when passing from L[Q0][Q2] to L[Q0][Q2][(bn : n ∈ ω)]. Thus the sequence
~S ∈ L[Q0][Q2] is still definable over L[Q0][Q2][(bn : n ∈ ω)], using the same
Σ1(ω1) formula Ψ(X,ω1) from the proof of Lemma 2.12.

As a consequence (∗)γ((x, y,m)) is, over L[Q0][Q2][(bn : n ∈ ω] equiva-
lent to the following Σ1(ω1, γ, (x, y,m))-formula:

Φ(ω1, γ, (x, y,m)) ≡ ∃M, (bn : n ∈ ω), (M transitive ∧M |= ZF−∧
{ω1, (bn : n ∈ ω)} ⊂M∧
M |= ∀β ∈ [ω1 · ωγ, ω1 · (ωγ + ω))

(either R2β or R2β+1 is nonstationary) ∧
M |= There is an ω-sequence (Xωγ+k)k<ω of subsets of ω1∧
M |= ∀k, δ(δ ∈ Xωγ+k ⇔ Rω1·(ωγ+k)+2·δ is not stationary and

δ /∈ Xωγ+k ⇔ Rω1·(ωγ+k)+2·δ+1 is not stationary) ∧
M |= ∀n ∈ ω(n ∈ (x, y,m)⇔ bn is an

ω1-branch through Xωγ+2n+1∧
n /∈ (x, y,m)⇔ bn is an ω1-branch through Xωγ+2n)”))

To verify the claimed equivalence, we shall only argue for the direction from
right to left, as the other one is clear by reflection. We recall that by Lemma
2.11 and Lemma 2.12, if some transitiveM is a model of ZF− and contains ω1,
it will correctly compute the relevant elements from the ~S-sequence. Last, if
M is as claimed and M |= “b is a cofinal branch through Xωγ+2n+1”, then
it must be true that Xωγ+2n+1=Sωγ+2n+1 and b really is a cofinal branch
through Sωγ+2n+1 which gives the direction from right to left.

It is clear that the above coding is not tied to reals from W , that is reals
from L. If we work over W̃ which is an arbitrary outer model of W by a
proper forcing, then for any real r ∈ W̃ , we can go to the according inner
model of W̃ as described above, and the real r satisfies Φ(ω1, γ, r) in that
inner model, and by upwards absoluteness in W̃ as well.

3.2.2 The Coding Forcing Pg(x,y,m)

We shall define the coding forcing we will use throughout this article. We
let C(ω1) ∈ W denote the usual ω1-Cohen forcing, which adds a subset to
ω1 with countable conditions. As W and L have the same reals, the forcing
is just C(ω1)L. Let g ⊂ C(ω1) be generic over W .

The forcing Pg(x,y,m) is first defined over the universe W [g] but its defini-
tion is, as we will see once the definition is completed, is fully independent
of the surrounding universe as long as it contains g and (x, y,m). will work
over generic extensions using iterated versions of the coding forcing Pg(x,y,m)
as well, which is what we are interested in most.

17

Let (x, y,m) ∈ W [g] be a real coding the triple consisting of x, y ∈
ωω ∩W [g] = ωω ∩ L and m ∈ ω. The coding forcing we are about to define
will use the generically added ω1-subset g, whose coded initial segments will
yield the set of starting points of ω-blocks of ~S, where we code up the ω1-
branches through ~S in a way which will correspond to the real (x, y,m).

We shall define the forcing Pg(x,y,m) now, working in W [g] but need to
define several sets first. We fix a constructible bijection ρ : [ω1]ω → ω1, and
we let h := {ρ(g ∩ α) : α < ω1}. Note here that by σ-closure of C(ω1),
it will generically add a set whose initial segments are constructible, so ρ
can be applied. To facilitate notation, we say that a set C ⊂ ω1 which
satisfies ∀α < ω1(C ∩ α ∈ L) is a set coding a constructible sequence of
ordinals, if and only if there is a set A ⊂ ω1, ∀α < ω1(A ∩ α ∈ L) and
{ρ(A ∩ α) : α < ω1} = C.

Then we list h = (αi : i < ω1) and form the set B ∈ W of branches
through ~S which witness the pattern (x, y,m) on every ω-block of ~S with
starting point in h. That is, for αi ∈ h we let

Bαi = {bωαi+2n : n /∈ (x, y,m)} ∪ {bωαi+2n+1 : n ∈ (x, y,m)}

We further collect all the club subsets we added to correctly define the
elements of ~S which have an index corresponding to an index of a branch in
B :=

⋃
i<ω1

Bαi . More precisely:

• We let X0 be the <-least (for some previously fixed wellorder of H(ω2))
set of the ω1·ω·ω1-many clubs which are necessary to correctly compute
Sωαi+n for every n ∈ ω and αi ∈ h using the formula Ψ from Lemma
2.12.

• We let X1 be <-least set of the ω1-many ω1-branches through elements
of (Sω·αi+n : n ∈ ω, αi ∈ h), so that the least ZF−-model of the form
Lζ [X1] witnesses all the formulas (∗)γ((x, y,m)), γ ∈ h from the last
Lemma in the model L[Q0][Q2][B] ⊂W ⊂W [g].

We fix a Σ1(ω1)-definable bijection π ∈ L between (ω1 · ω) · 2 and ω1, and
use π to identify X0 ×X1 with its image under π which we denote with X.
So X ⊂ ω1 codes in an easily definable way X0 and X1. It is clear that
in W [g] ⊃ L[Q0][Q2][B] any transitive model M ∈ W [g] of a sufficiently
big fragment of ZFC, which contains X as an element will also satisfy the
following Σ1(ω1, X)-formula with N = Lη[X]M (for a suitable η) being a
witness:

18

ϕ((x, y,m)) ≡∃N(N transitive , |N | = ℵ1, N |= ZF−, X ∈ N∧
N |= “∃h ⊂ ω1(∀α < ω1(h ∩ α ∈ L∧
h is a set coding a contructible sequence of ordinals
∧ (∀β ∈ h∀n ∈ ω(n ∈ (x, y,m)⇒ Sωβ+2n+1 has an ω1-branch ∧

n /∈ (x, y,m)⇒ Sωβ+2n has an ω1-branch))))”

Note here that in the above formula, we can actually demand that n ∈ ω ⇔
Sωβ+2n+1 has an ω1-branch holds true, and likewise for n /∈ (x, y,m), but
we will not need this strengthening. Note further that whenever we write
Sωβ+2n has an ω1-branch), we intend to actually use the Σ1(ω1)-formula Ψ

from the proof of lemma 2.12 to define the trees from ~S.
Our goal is to reshape the set X ⊂ ω1 in such a way that the localized

version of ϕ((x, y,m)) also works for suitable countable transitive models.
The following argument takes place in L[X] ⊂ L[Q0][Q2][B] ⊂ W . First we
fix an ℵ1-sized ordinal β such that X ∈ Lβ[X] and Lβ[X] |= ZF− + “ℵ2

exists”. Note then, that necessarily Lβ[X] |= ϕ((x, y,m)). Then we pick the
<L[X]-least club C ⊂ ω1, C ∈ L[X] and the <L[X]-least sequence (Mα : α ∈
C) of countable elementary submodels such that

∀α ∈ C(Mα ≺ Lβ[X] ∧Mα ∩ ω1 = α)

Now let the set Y ⊂ ω1, Y ∈ L[X] code the pair (C,X) in the following way.
The odd entries of Y should code X and if E(Y) denotes the set of even
entries of Y and {cα : α < ω1} is the enumeration of C, then we demand
that E(Y) satisfies that

1. E(Y) ∩ ω codes a well-ordering of type c0.

2. E(Y) ∩ [ω, c0) = ∅.

3. For all β, E(Y) ∩ [cβ, cβ + ω) codes a well-ordering of type cβ+1.

4. For all β, E(Y) ∩ [cβ + ω, cβ+1) = ∅.

The upshot in forming this reshaped Y ∈ L[X] is the following assertion,
which shows that already countable transitive models of ZF− which satisfy
some mild additional assumptions, are already sufficient to see the branches
corresponding to the characteristic function of (x, y,m).

Lemma 3.2. Work in W̃ which should be an ω1-preserving outer universe of
W [g]. Let X,C, Y ⊂ ω1, γ < ω1 and x, y ∈ W ∩ ωω all be as defined above.
For any countable transitive model N ∈ W̃ of ZF− + “ℵ2 exists”, such that
ωN1 = (ωL1)N and Y ∩ ωN1 ∈ N , we have that

N |= ϕ((x, y,m))

19

Proof. Let N ∈ W̃ be countable and transitive, and assume that ωN1 =
(ωL1)N and Y ∩ωN1 ∈ N . Then, ωN1 ∈ C, as otherwise there would be cγ and
cγ+1 such that ωN1 ∈ (cγ , cγ+1). Item 3 in the definition of Y yields that N
can see that cγ+1 is countable, which contradicts ωN1 < cγ+1.

We let M̄ be the transitive collapse ofMωN1
≺ Lβ[X], whereMωN1

belongs
to the sequence of elementary submodels (Mα : α < ω1) defined above. As
ωN1 ∈ C, we can infer that M̄ and N share the same ω1, i.e. ωN1 = ωM̄1 .
Moreover

MωN1
|= “The least ZF−-model Lζ [X] witnesses that ϕ((x, y,m)) is true”,

as MωN1
≺ Lβ[X] and as Lβ[X] |=“The least ZF−-model Lζ [X] witnesses

ϕ((x, y,m))”. So

M̄ |= “The least ZF−-model Lζ̄ [X ∩ ωM̄1] witnesses ϕ((x, y,m)))”.

But N contains Y ∩ωN1 , so it contains X ∩ωN1 , and N can construct Lζ̄ [X ∩
ωN1], so

N |= Lζ̄ [X ∩ ωN1] witnesses ϕ((x, y,m)) holds true”,

and hence N |= ϕ((x, y,m)).

We shall use our just formed set Y ⊂ ω1, Y ∈ L[X] to finally define
the forcing Pg(x,y,m) . We work in W [g] as our ground model, and we let
the forcing Pg(x,y,m) be the almost disjoint coding forcing AD(Y) relative to
our fixed almost disjoint family of reals D = {dα : α < ω1} ∈ L (D is
defined right after Definition 2.4) to code the set Y ∈ L[X] ⊂ W [g] into
one real r. Conditions of AD(Y) are pairs (r,R) ∈ [ω]<ω ×D<ω ordered by
(s, S) < (r,R) whenever it holds that

• r ⊂ s and R ⊂ S.

• If α ∈ Y and dα ∈ R then r ∩ dα = s ∩ dα.

In particular the definition of AD(Y) only depends on the subset Y of ω1

(which itself only depends on g and (x, y,m)) we code and AD(Y) will be
independent of the surrounding universe in which we define it, as long as it
has the right ω1 and contains the set Y . Moreover, we have shown already,
that AD(Y) preserves Suslin trees.

We let G(1) be a AD(Y)-generic filter over W [g], and let rY denote the
generic real added by G(1), which codes the set Y ⊂ ω1 in the following way:

∀α < ω1(α ∈ Y ⇔ rY ∩ dα is finite).

20

We note that the above equivalence holds for all ω1-preserving outer models
W ′ ⊃ W̃ [g][G(1)] as well (actually in all outer universes, though Y then
might become countable, but we will not need that), by the absolute defini-
tion of D ∈ L. The real rY contains all the relevant information, such that
arbitrary countable ZF−-models which contain rY and satisfy an additional
mild technical assumption, suffice to witness that ϕ((x, y,m)) holds true.

Lemma 3.3. Let W̃ be an outer universe of W [g][G(1)] W̃ |= ZFC and let
(x, y,m) be our fixed real from the above. Working in W̃ ⊃ W [g][G(1)], the
real rY ∈W [g][G(1)] has the following Π1

2((x, y,m))-property there:

(∗∗)rY (x, y,m) :≡For any countable, transitive model N of ZF− + “ℵ2 exists”

such that ωN1 = (ωL1)N and rY ∈ N , we have that
N |= ϕ((x, y,m))

Proof. We assume first that W̃ = W [g][G(1)]. As the assertion of (∗∗)rY is
a Π1

2(rY)-statement, once we can show its truth in W [g][G(1)], we know it
will be true in all outer W̃ ⊃W [g][G(1)] by Shoenfield absoluteness.

As ωN1 = (ωL1)N and by the absoluteness of the decoding, we can infer
thatN will decode out of rY , using its own version ofD (which is justD∩ωN1)
the set Y ∩ ωN1 , where Y is as in the previous lemma. So if Y ∩ ω1 codes
the set Z on its odd entries, then again by absoluteness of the decoding,
Z = X ∩ ωN1 , where X is again as in the previous lemma. Hence

N |= “The least ZF− model Lζ [Z] witnesses ϕ((x, y,m)) holds true”

so N |= ϕ((x, y,m)) as asserted by the lemma.

To summarize, for a given real (x, y,m) ∈W ∩ωω = L∩ωω which in turn
is the code for x, y ∈ ωω and m ∈ ω the forcing P(x,y,m) ∈ W [g] is a proper
forcing whose factors are of size ℵ1 which generically adds a real rY such
that the Π1

2-property (∗∗)rY ((x, y,m)) becomes true for (x, y,m). Speaking
more generally, if W̃ ⊃ W [g] is a generic extension of W [g] and if there is
a real r ∈ W̃ which witnesses (∗∗)r((x, y,m)) for a given real (x, y,m) ∈ W̃
then we say that r witnesses that the real (x, y,m) is written into ~S, or that
r witnesses that (x, y,m) is coded into ~S. If (x, y,m) ∈ W̃ is such that there
is a real r′ such that (in W̃) r witnesses that (x, y,m) is coded into ~S, then
we just say that W̃ thinks that (x, y,m) is coded into ~S or that W̃ thinks
that (x, y,m) is written into ~S.

The statement “(x, y,m) is coded into ~S” is a Σ1
3((x, y,m))-formula.

Indeed it is expressible using a formula of the form ∃r∀M(∆1
2(r,M) →

∆1
2(r,M, (x, y,m)):

∃r∀M(M is countable and transitive and M |= ZF− + “ℵ2 exists”

and ωM1 = (ωL1)M and r, (x, y,m) ∈M →M |= ϕ((x, y,m)))

21

As already seen in the above the truth of “(x, y,m) is coded into ~S”
is usually established via showing the slightly stronger formula which is
Σ1

3((x, y,m)) as well:

∃r∀M(M is countable and transitive and M |= ZF−“ℵ2 exists” and (ωM1 = (ωL1)M and

r, (x, y,m) ∈M →M |= “r codes a set Y which in turn codes X ⊂ ωM1
and for the least ZF−-model Lζ [X]

Lζ [X] |= ∃h ⊂ (ωN1)(h a set coding a constructible sequence of ordinals

∧ ∀n ∈ ω∀ξ ∈ h(n ∈ (x, y,m)→ S
L[X]
ωξ+2n+1 has an ω1-branch

n /∈ (x, y,m)→ S
L[X]
ωξ+2n has an ω1-branch))”).

The last Lemma has a converse. In particular, the projective and local
statement (∗∗)r((x, y,m)) will determine how certain inner models of the
surrounding universe will look like with respect to branches through ~S.

Lemma 3.4. Let W̃ ⊃W , W̃ |= ZFC be an ω1-preserving outer model. Let
x, y be reals in W̃ , let m ∈ ω. Let r ∈ W̃ be a real such that (∗∗)r((x, y,m))
is true. Then also uncountable, transitive M ∈ W̃ , {ω1, r} ⊂ M , M |=
ωM1 = ω1 and M |= ZF− + “ℵ2 exists”, will satisfy that M |= ϕ((x, y,m))
holds.

Proof. Assume not, then there would be an uncountable, transitiveM which
is a counterexample to the assertion of the Lemma. By Löwenheim-Skolem,
there would be a countable N ≺M , r ∈ N which we can transitively collapse
to obtain the transitive N̄ . But N̄ would witness that (∗∗)r((x, y,m)) is not
true for every countable, transitive model, which is a contradiction.

Corollary 3.5. Assume that W̃ is an outer universe of W with the same
ω1 and such that W̃ is stationary set preserving over W , in particular, sta-
tionary subsets of ω1 in W remain stationary in W̃ . Assume further that
r ∈ W̃ is a real such that W̃ |= (∗∗)r((x, y,m)) for a triple (x, y,m) ∈ W̃ .
Let h ⊂ ω1 be the set coding a constructible sequence whose existence is as-
serted by ϕ((x, y,m)) and which represents the set of ω-blocks of ~S where the
pattern corresponding to ((x, y,m)) is written. Assume that γ ∈ h. Then in
W̃ we have that

n ∈ (x, y,m)⇒ L[r] |= “Sωγ+2n+1 has an ω1-branch”.

and

n /∈ (x, y,m)⇒ L[r] |= “Sωγ+2n has an ω1-branch”.

Proof. Note first that by the last lemma,

L[r] |= ϕ((x, y,m))”

22

As L[r] is an inner model of W̃ and the latter is a stationary set preserving
outer model of W , we get that the pattern of stationary, not-stationary
subsets of our distinguished sequence of L-stationary, co-stationary subsets
(Rβ : β < ω1), which code up ~S, is the same, no matter whether we compute
it in L[r], W̃ orW using our formula Ψ(X,ω1) from the proof of lemma 2.12.

In particular, L[r] computes ~S correctly. To finish the proof we just note
that the statement of a of the existence of an ω1-branch through some Sβ
is a Σ1(ω1)-formula and hence upwards absolute, so the assertion follows
immediately from the last lemma.

We aim to iteratively use the coding forcings, and in effect code more and
more real into ~S; therefore filling up our distinguished Σ1

3-set which consists
of all reals coded into ~S.

The definition of Pg(x,y,m) has a certain degree of absoluteness. A fact we
will exploit heavily.

Lemma 3.6. Let (x, y,m) ∈ W and let W̃ ⊃ W [g], W̃ |= ZFC, ωW̃1 = ω1.
Then Pg(x,y,m) as defined in W̃ contains a dense subset A which is an element
of W [g]. For r1, r2 ∈ A it holds that

W |= r1 <Pg
(x,y,m)

r2 ⇔ W̃ |= r1 <Pg
(x,y,m)

r2.

Proof. The dense subset A of Pg(x,y,m) = (C(ω1))L ∗ AD(Ẏ) is just A :=

{(p, q̌) : p ∈ P (0) and a q ∈ [ω]<ω ×D<ω}, and this dense set is computed
in an absolute way in every universe which contains ~S.

To show that also the order < on Pg(x,y,m) does not depend on the sur-
rounding universe W̃ , it suffices to remark that < only depends on the first
coordinate p ∈ (C(ω1))L, the forcing being of course absolute. Indeed, by
the definition of Pg(x,y,m) all further manipulations of p use absolute compu-

tations performed in L[~S][p] (see the steps in the definition of Pg(x,y,m) which
define the reshaped set Y ⊂ ω1 in L[X]), so the absoluteness of < of Pg(x,y,m)
is shown.

3.2.3 Allowable Forcings

Next we define the set of forcings which we will use in our proof. They
belong to a well-defined set, we call allowable forcings:

Definition 3.7. Let W be our ground model. Let α < ω1 and let F ∈ W ,
F : α → W be a bookkeeping function. A mixed support iteration P =
(Pβ : β < α) is called allowable (relative to the bookkeeping function F) if
the function F : α→W determines P inductively as follows:

• P0 is the ω1-length, countably supported product of C(ω1). We let (gα :
α < ω1) denote the P0-generic filter over W .

23

• We assume that β > 0 and Pβ is defined. We let Gβ be a Pβ-generic
filter over W and assume that F (β) = (ẋ, ẏ, ṁ, η̇), for a quadruple of
Pβ-names. We assume that ẋGβ =: x, ẏGβ =: y are reals, ṁGβ =: m
is a natural number and η̇Gβ is an ordinal < ω1.

Then we split into two cases:

– If there is a name of a triple (ȧ, ḃ, k̇) such that ȧGβ = a, ḃGβ =
b, k̇Gβ = k and the forcing Pgη(a,b,k) is a factor of the iteration up
to β, Pβ already, then we force with the trivial forcing.

– If not, then let P(β) := Pgη(x,y,m).

We use finite support on all factors with index ≥ 1.

Informally speaking, the bookkeeping F hands us at every step reals of
the form (x, y,m) and uses a C(ω1)-set which gives rise to a subset of ω1

(these sets we will call coding areas) which corresponds to the places where
we code up the relevant branches through ~S to compute (x, y,m) using the
coding mechanism described in the previous section. Each such coding area
is used at most once in an allowable forcing, which will ensure that we will
not accidentally code an unwanted (x, y,m) into ~S.

Every allowable forcing is of the form P0 ∗ (F1≤α<δP(α)), for P0 =∏
α<ω1

C(ω1), and the factors Pα, will use a countable set of coding ar-
eas only. By the absoluteness of the definition of the coding forcing due to
Lemma 3.6, we can therefore re-write P0∗(F1≤α<δP(α)) as P∗(F1≤α<δP(α))×
Q, where P =

∏
α<η(C(ω1))L for a sufficiently large η < ω1 and Q =∏

α∈[η,ω1)(C(ω1))L (which of course is isomorphic to P0). Note that by Eas-
ton’s Lemma (see Lemma 15.19 from [11]), every real in P0 ∗ (F1≤α<δP(α))
is in fact a real in P ∗ (F1≤α<δP(α)) as Q is still ω-distributive over W [P ∗
(F1≤α<δP(α))]. In particular every allowable name of a real can be written
as a name which depends on a countable set of coding areas only.

If P ∈ W is a forcing such that there is an α < ω1 and an F ∈ W ,
F : α → W such that P is allowable with respect to F , then we often just
drop the F and simply say that P ∈W is allowable.

Definition 3.8. Let P be an allowable forcing over W relative to F : δ1 →
H(ω2), and let Q be an allowable forcing over W relative to the bookkeeping
H : δ2 → H(ω2). Then we say Q is an allowable extension of P, denoted by
Q . P, if δ1 < δ2 and H � δ1 = F .

As allowable forcings form the base set of an inductively defined shrinking
process, they are sometimes also denoted by 0-allowable to emphasize this
fact. Intuitively for an allowable forcing,

Lemma 3.9. 1. If P = (P(β) : β < δ) ∈ W is allowable then for every
β < δ, Pβ |P(β)| = ℵ1, thus every factor of P is forced to have size
ℵ1.

24

2. Every allowable forcing over W is ℵ1 and CH preserving.

3. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.
To see the second item we quickly note that every allowable forcing is

of the form P ∗Fβ<δȦD(Ẏβ), where P is σ-closed and the second part is a
finite support iteration of ccc forcings, hence ℵ1 is preserved. That CH is
preserved as well is standard.

Let P1,P2 ∈ W be allowable. To see that the third item is true, we first
note that P :=

∏
α<ω1

C(ω1) is isomorphic to
∏
α<ω1

C(ω1)×
∏
α<ω1

C(ω1) =
P× P via splitting the coordinates into odd and even. If we write

P1 = P ∗Fβ<δP
gβ
(xβ ,yβ ,mβ)

and
P2 = P ∗Fβ<δ′P

g′β
(x′β ,y

′
β ,m

′
β)

then consequentially P1 × P2 is

(P ∗Fβ<δP
gβ
(xβ ,yβ ,mβ))× (P ∗Fβ<δ′P

g′β
(x′β ,y

′
β ,m

′
β)

)

which is the same as

(P× P) ∗Fβ<δP
gβ
(xβ ,yβ ,mβ) ∗Fβ<δ′P

g′β
(x′β ,y

′
β ,m

′
β)

and the latter is, using that P ∼= P× P, isomorphic to

P ∗Fβ<δP
gβ
(xβ ,yβ ,mβ)Fβ<δ′P

g′β
(x′β ,y

′
β ,m

′
β)

and the isomorphism ensures that {g′β : β < ω1} ∪ {gβ : β < ω1} forms a
pairwise distinct set. In particular the product of P1 × P2 is allowable.

The second assertion of the last lemma immediately gives us the follow-
ing:

Corollary 3.10. Let P = (P(β) : β < δ) ∈ W be an allowable forcing over
W . Then W [P] |= CH. Further, if P = (P(α) : α < ω1) ∈W is an ω1-length
iteration such that each initial segment of the iteration is allowable over W ,
then W [P] |= CH.

The set of triples of (names of) reals which are enumerated by the book-
keeping function F ∈ W which comes along with an allowable P = (P(β) :
β < δ), we call the set of reals coded by P. That is, if

P = (
∏

(C(ω1))L) ∗ P
gηβ
(ẋβ ,ẏβ ,ṁβ)

25

and G ⊂ P is a generic filter and if we let for every β < δ, ẋGβ =: xβ ,
ẏGβ =: yβ , ṁG

β =: mβ , then {(xβ, yβ,mβ) : β < α} is the set of reals coded
by P and G (though we will suppress the G). Next we show, that iterations
of 0-allowable forcings will not add unwanted witnesses to our distinguished
Σ1

3-formula ψ((x, y,m)), where

ψ((x, y,m)) ≡ ∃r∀M(M is countable and transitive and M |= ZF− + “ℵ2 exists”

and ωM1 = (ωL1)M and r, (x, y,m) ∈M →M |= ϕ((x, y,m)))

Lemma 3.11. If P ∈ W is allowable, P = (Pβ : β < δ), G ⊂ P is generic
over W and {(xβ, yβ,mβ) : β < δ} is the set of (triples of) reals which is
coded as we use P. Let ψ(v0) be the distinguished formula from above. Then
in W [G], the set of reals which satisfy ψ(v0) is exactly {(xβ, yβ,mβ) : β <
δ}, that is, we do not code any unwanted information accidentally.

Proof. Let G be P generic over W . Let g = (gβ : β < δ) be the set of
the δ many ω1 subsets added by the (C(ω1))L-part and which are used by
the factors of P as coding areas. We let ρ : ([ω1]ω)L → ω1 be our fixed,
constructible bijection and let hβ = {ρ(gβ ∩ α) : α < ω1}. Note that the
family {hβ : β < δ} forms an almost disjoint family of subsets of ω1. Thus
there is α < ω1 such that α > hβ1 ∩ hβ2 for β1 6= β2 < δ and additionally, α
is an index not used by the iterated coding forcing P, where we say that an
index i of ~S is used by P whenever an ω1-branch through Si is coded by a
factor of P.

We fix such an α and Sα ∈ ~S. We claim that there is no real inW [G] such
that W [G] |= L[r] |= “Sα has an ω1-branch”. We show this by pulling out
the forcing Sα out of P. Indeed if we consider W [P] = L[Q0][Q1][Q2][P], and
if Sα is as described already, we can rearrange this to W [P] = L[Q0][Q′1 ×
Sα][Q2][P] = W [P′][Sα], where Q′1 is

∏
β 6=α Sβ and P′ is Q0 ∗Q′1 ∗Q2 ∗ P.

Note now that, as Sα is ω-distributive, 2ω ∩W [P] = 2ω ∩W [P′], as Sα is
still a Suslin tree inW [P′] by the fact that ~S is independent, and no factor of
P′ besides the trees from ~S used in P′ destroys Suslin trees. But this implies
that

W [P′] |= ¬∃rL[r] |= “Sα has an ω1-branch”

as the existence of an ω1-branch through Sα in the inner model L[r] would
imply the existence of such a branch in W [P′]. Further and as no new reals
appear when passing to W [P] we also get

W [P] |= ¬∃rL[r] |= “Sα has an ω1-branch”.

On the other hand any unwanted information, i.e. any (x, y,m) /∈
{(xβ, yβ,mβ) : β < δ} such that W [G] |= ψ((x, y,m)) will satisfy that
there is a real r such that

n ∈ (x, y,m)→ L[r] |= “Sωγ+2n+1 has an ω1-branch”

26

and
n /∈ (x, y,m)→ L[r] |= “Sωγ+2n has an ω1-branch”.

by corollary 3.5, for ω1-many γ’s.
But by the argument above, only trees which we used in one of the factors

of P have this property, so there can not be unwanted codes.

Let P = (Pβ : β < δ) ∈ W be allowable. Let A ⊂ β, A ∈ W be such
that the forcing PA := Fη∈AP(η) (i.e. the iteration which uses the factors
of Pδ whose indices are in A using mixed support) is a forcing in W (which
is automatically a subforcing of P) and let iAδ be the canonical embedding
which maps PA to Pδ via

iAδ(p) = p′ where p′ is such that p′(η) =

{
p(η) if η ∈ A
1 else

.

Hence there are Pδ-names ẋ which can, in a canonical way, be identified
with a PA-name namely as long as all the Pδ-conditions of ẋ are in fact PA-
conditions, using the identification iAδ. For the rest of this article we will
identify PA-names with their corresponding Pδ-names, which will simplify
the language. In particular, in the definition of allowable forcings, if at stage
β, F (β) is a Pβ-name for a real, which is also a PA-name under the just
described identification, then we will treat the name as if it was a PA-name,
using iA.

3.2.4 1-allowability

Given the notion of allowable, we can form a first approximation to the set
of forcings we eventually want to use in our proof. We call these forcings 1-
allowable. To motivate this notion, recall our strategy to force a model where
the Π1

3-uniformization property holds. We list the Π1
3-formulas (ϕm)m∈ω with

two free variables in some recursive way, and let Am = {(x, y) : ϕm(x, y)}
be the according sets. We let fm denote the uniformizing function for Am
and write f(m,x) for fm’s values at x. The goal is to pick for every m ∈ ω
and every real x for which the x-section of Am is non-empty, a value f(m,x)
such that (x, f(m,x)) ∈ Am and such that for every y′ 6= f(m,x) with
(x, y′) ∈ Am, the triple (x, y′,m) is coded somewhere in the ~S, sequence,
using an iteration of length ω1 such that each countable initial segment is
allowable. As being coded into ~S is a Σ1

3-property, the unique (x, y) ∈ Am
which is not coded into ~S, is a Π1

3-property. This way, the graph of fm
becomes a Π1

3-definable set.
The underlying idea of forming 1-allowable forcings is the following line

of reasoning. We will restrict ourselves to a simplified toy example first
which we will describe now. Work in W . Assume that x ∈ W is a real,

27

Am ⊂ 2ω × 2ω is a Π1
3-set such that the x-section Am,x of Am has exactly

two elements y1 and y2. Assume further that no allowable P ∈ W will add
new elements to the x-section of Am. Our modest goal is to find a good
value for f(m,x) only, thus we will leave out the question of uniformizing all
other Ak’s and all other x-sections of Am and their interferences among each
other, as these make any easy attempt of a solution immediately extremely
complicated.

Now, when we want to implement the above ansatz, we have to decide
which one of the two reals y1 or y2 should become the value of our uni-
formizing function. This also means that we have to code up the other real
somewhere into ~S.

As we restrict ourselves to only use allowable forcings, we can ask our-
selves whether an allowable forcing P exists, such that P (x, y1) /∈ Am. If
the answer is no, then we can safely code (x, y2) into ~S and we have found our
value. If the answer is yes, we know that (x, y1) is a potentially dangerous
value for our fm, and we try (x, y2) instead.

If there is no allowable Q for which Q (x, y2) /∈ Am, then y2 is a safe
value for fm(x) and we are done again.

In the last remaining possibility, there could be an allowable Q over W
such that Q (x, y2) /∈ Am, so also (x, y2) is a dangerous value for fm(x).
But in this situation we can use the product P×Q, which is allowable, and
for which P × Q (x, y1) /∈ Am ∧ (x, y2) /∈ Am holds. As we assumed that
we will not create new values on the x-section of Am, and by the upwards-
absoluteness of Σ1

3-formulas, we ensured that the x-section of Am becomes
empty, hence we do not have to uniformize at x.

This way we have solved the problem of finding a value for the uniformiz-
ing function at x, but at the cost that in the case where we use P × Q to
force the x-section of A empty, we have no control of which new codes are
added. It could well be that one of the factors adds a dangerous value for
another x′ for A.

To get past this difficulty we need to find a safe way of forcing x-sections
empty without adding new danger. This is where the reformulation in terms
of a fixed point problem is convenient and will be carried out in the next
sections. In short we are searching for a subset P of allowable forcings such
using a bookkeeping F the following definition of an iteration lands in P
again: for any pair of reals (x, y) listed by F in our iteration:

• Either (x, y) can be forced out of A with a forcing in P in which case
we use such a forcing,

• or (x, y) remains in A for each forcing from P, in which case we have
found a value for our uniformizing function and do not code (x, y) into
~S, provided we don’t already have one. If we have a value already we
code (x, y) into ~S.

28

To find such a suitable P, which will be the ∞-allowable forcing, we will
a sort of derivation operator, which acts on subsets of allowable forcings.

Before we start to define the notion of 1-allowable which is the first
derivation of allowable forcings we remind the reader of the following useful
concept.

Definition 3.12. Let P ∈ W be an allowable forcing and let ṙ ∈ W be a
P-name of a real, i.e. P ṙ ∈ 2ω. Then we say that ṙ is a nice (P)-name of
a real, whenever is has the following form

ṙ = {((n,mn
p), p) : p ∈ An(ṙ)},

where for every n ∈ ω, An(ṙ) is a maximal, (necessarily) countable antichain
in P, and for every n ∈ ω and every p ∈ An(ṙ), mn

p ∈ ω and for every
p ∈ An(ṙ),

p ṙ(n) = mn
p .

Note that such a nice P-name is always an element of H(ω2)W .

There is an analogue notion of nice name of an ordinal, and it is immedi-
ate that if P ∈W is allowable and τ ∈W is a P-name of a countable ordinal
which is a nice P-name, then τ is an element of H(ω2)W as well. We will
often tacitly assume that names are in fact nice names to make notation a
bit easier.

We let < denote some fixed wellorder of H(ω2)W which helps us to define
the iteration. We identify equivalent names for reals, that is for each forcing
name ṙ of a real, we consider actually the class of all names which are
equivalent to ṙ, use the <-least element of that class, and then, for different
classes compare their <-least representatives again using <.

Now we define the notion of 1-allowability via induction. We work
over W as our ground model. We let η < ω1, and let F : η → W 3 be
a bookkeeping function. The values F (β) are triples and are written as
(F (β)0, F (β)1, F (β)2). With the help of F we will define two objects induc-
tively.

Assume we are at stage β < η of our iteration and that we have already
created the following list of objects:

• The forcing iteration Pβ up to stage β which is an allowable forcing
over W and Gβ a Pβ-generic filter over W . For β = 0 we let Pβ be the
trivial forcing.

• The set Iβ = İ
Gβ
β = {(ẋGβ , ẏGβ , ṁGβ , γ̇Gβ) : ṁ is a Pβ-name for a

natural number, ẋ, ẏ are Pβ-names of reals, γ̇ is a name for an ordinal}
of possible preliminary values of f . If (x, y,m, γ) ∈ Iβ , we say that the
potential f(m,x)-value y has rank γ, or just that (x, y,m) has rank γ.
The concept of ranked f -values will become clear as we proceed in the
proof. We let I0 = ∅.

29

To make things intelligible, we argue in W [Gβ], that is semantically.
The definitions to come will work uniformly for all possible Gβ , so it is
straightforward to translate things back into forcing language using names.

We assume that F (β)0 = (ẋ, ẏ, ṁ) and assume that A ⊂ β, A ∈ W is
such that ẋ, ẏ, ṁ are in fact PA-names where PA =Fβ∈AP(β), and PA ∈W .
Let GA := Gβ � A. We let x = ẋGβ , y = ẏGβ , m = ṁGβ . We define the next
forcing P(β), and a new f(m,x)-value which will determine the new Iβ+1

according to these rules:

(a) We collect all names for reals ȧ from PA. For every such PA-name
ȧ we pick the <-least, nice name ḃ such that ȧGA = ḃGA and
collect these names ḃ into a set called C. We assume that there
is a <-least, nice PA-name ẏ0 in C such that ẏ0

GA = y0, and such
that

W [Gβ] |= (x, y0) ∈ Am
and for which there is no allowable extensionR . Pβ such that

W [Gβ] |= “R/Gβ (x, y0) /∈ Am”.

If this is the case, then we define P(β) in W [Gβ] as follows:

• We assume first that F (β)1 = η̇ where η̇ is a PA-name of an
ordinal < ω1 such that η̇Gβ = η and such that gη has not been
used as a coding area by any of the factors of Pβ . Also we assume
that F (β)2 is a PA-name of a triple (ẋ, ż, ṁ), with ẋGA = x,
żGA = z 6= y0 and ṁGA = m. Then we let

P(β) := Pgη(x,z,m).

Else we just pick the <-least PA-name for a an ordinal < ω1, η̇
such that η̇Gβ = η and such that gη has not been used as a coding
area by any of the factors of Pβ and the least PA-name ż such
that żGA = z 6= y0 and define

P(β) := Pgη(x,z,m).

We also let Pβ+1 = Pβ ∗ P(β) and let Gβ+1 = Gβ ∗ G(β) be its
generic filter.

• We set a new f value, i.e. we set f(m,x) := y0 and assign in
W [Gβ+1] the rank 0 to the value (x, y0,m). We update IGβ+1

β+1 :=

I
Gβ
β ∪ {(x, y0,m, 0)}.

(b) We assume that case (a) is not true. In that situation we let the
bookkeeping F fully guess what to force with. We assume that F (β)1

30

is a nice PA name for a pair of reals of the form (ẋ′, ż) such that
ẋ′GA = x, żGA = z, together with a name for an ordinal ξ̇ such that
PA ξ̇ > 0. We assume that F (β)2 = η̇ is a PA-name of a countable
ordinal. If η̇GA = η and gη has not been used as a coding area by one
of the factors of Pβ , then we let

P(β) := Pgη(x,z,m)

Pβ+1 = Pβ ∗ P(β), and let G(β) be a P(β)-generic filter over W [Gβ]
and Gβ+1 = Gβ ∗G(β).

Further we do not update our set Iβ of preliminary values for f , i.e.
Iβ+1 := Iβ.

Otherwise, i.e. when F (β)1 and F (β)2 do not have the desired form we
pick the <-least pair of PA-names of reals, (ẋ′, ẏ0) such that ẋ′

GA
= x,

ẏGA0 = y0, pick the least PA-name of a countable ordinal η̇ such that
η̇GA = η and η has not been used as a coding area by one of the factors
of Pβ , and, working in W [GA], define

P(β) := Pgη(x,s,m)

Also we letG(β) be a P(β)-generic filter overW [Gβ] and setW [Gβ+1] =
W [Gβ ∗G(β)].

Finally we do not update and let Iβ+1 := Iβ .

This ends the definition of 1-allowability in the successor stages.
If we arrive at a limit stage β in our iteration, we take the direct limit of

the initial segments, i.e.

Pβ := dir lim(Pν : ν < β).

For an arbitrary Pβ-generic filter Gβ we let

I
Gβ
β :=

⋃
ξ<β

I
Gξ
ξ = {(m,x, y, ζ) : ∃ξ < β((m,x, y, ζ) ∈ IGξξ)}.

Definition 3.13. Work in W . Let η < ω1 and assume that F : η →W 3 is a
bookkeeping function. If P = (Pβ : β < η) is an allowable forcing and I = Iη
such that P, I are the result of applying the rules (a) and (b) together with F
over W , then we say that (P, I) is 1-allowable with respect to F (over W). If
I is clear from the context we often just say P is 1-allowable with respect to
F . We say P is 1-allowable if there is an F such that P is 1-allowable with
respect to F .

Before continuing proving some properties of 1-allowable forcings we want
to add a couple of remarks concerning its definition.

31

• Note that there are necessarily Π1
3-formulas ϕm, where case (a) must

apply whenever m ∈ ω is considered by the bookkeeping, e.g if ϕm
is logically equivalent to a true Σ1

2-formula. In that case we can not
alter its truth value by any additional forcing. As a result, the notion
of 1-allowable is different from 0-allowable and the set of 1-allowable
forcings is a proper subset of the set of 0-allowable forcings.

• In the definition of case (a), we refrain from considering all pairs of
reals (x, y) from W [Gβ], but instead just scan through all pairs which
are in the inner model W [GA] with x as the first coordinate. This
stratification has technical advantages which shall become clear in the
process of the arguments later. The upshot of this choice is that it
enables a strategy to pick potential fm-values in such a way that they
will line up in a nice way as we go along in our 1-allowable iteration.
The idea to not just pick a promising fm-values once, and keep it for
the rest of the iteration, but instead add potential fm(x)-values in
every step of the iteration ensures that we will not run into problems
when dealing with products of allowable forcings. (If we would pick
one fixed f(m,x)-value at a certain stage of the iteration and would
want to keep it, throughout the iteration we run into problems when
trying to keep 1-allowable forcings closed under products.)

• The set of potential f -values I does not have an influence on how the
1-allowable forcing P is defined at every step. Indeed, the definition of
P(β) does only depend on F which also determines Pβ . We use I to
make some arguments more transparent.

Lemma 3.14. Let F1 : δ1 → W 3 and F2 : δ2 → W 3 be two bookkeeping
functions in W , let P1 ∈W be the 1-allowable forcing with respect to F1 and
let P2 ∈ W be the 1-allowable forcing with respect to F2. Then P1 × P2 is
a 1-allowable forcing relative to a bookkeeping function F ′ which is definable
from F1 and F2.

Proof. We shall define a bookkeeping function F ′ such that P1 × P2 is 1-
allowable relative to F ′. For ordinals β < δ1 we let F ′(β) = F1(β). Then
the 1-allowable forcing which will be produced on the first δ1-many stages is
P1.

For β > δ1, we let F ′(β) = F2(β−δ1). Then we claim that F ′ � [δ1, δ1+δ2)
using the rules of 1-allowability will produce P2.

First we prove by induction on β ∈ [δ1, δ1 + δ2) that if β is a stage such
that case (b) applies when building the forcing using F ′ over W , then case
(b) also must apply at β − δ1 when building P2 over W using F2 and vice
versa.

Assume first that at stage β − δ1, P2
β−δ1 is defined and case (b) applies

there. That is, if F (β − δ1)0 = (ẋ, ẏ, ṁ) and G2
β−δ1 is an arbitrary P2

β−δ1-

32

generic filter over W , there is an allowable Q . P2
β−δ1 such that

Q/G2
β−δ1 (ẋ

G2
β−δ1 , ẏ

G2
β−δ1) /∈ A

ṁ
G2
β−δ1

.

But then also P1×Q .P1×P2
β is allowable and P1× (Q/G2

β) (ẋG
2
β , ẏG

2
β) /∈

A
ṁ
G2
β
by upwards absoluteness of Σ1

3-formulas. Thus we must be in case (b)

at stage β as well, when defining P1 × P2 using F ′.
On the other hand if we are at stage β ∈ [δ1, δ1 + δ2), F (β)0 = (ẋ, ẏ, ṁ),

G1 × G2
β−δ1 is an arbitrary P1 × P2

β−δ1-generic filter over W and we are in
case (b) when defining the next forcing using F ′, then there is an allowable
R . P1 × P2

β−δ1 such that

R/(G1 ×G2
β−δ1) (x, y) /∈ Am.

But then R . P2
β−δ1 is true, and R witnesses that we must be in case (b) at

stage β − δ1 as well, when defining P2 using F 2 working over W [G2
β−δ1].

As a consequence we must be in the same cases when defining P1 × P2

at stage β over W and when defining P2 at stage β − δ1 using F2 over W .
But then we let F ′(β) be such that it does exactly what F2(β − δ1) does.
This implies that P1×P2

β+1 is 1-allowable with respect to F ′ � β+ 1 and the
induction step is proven.

For β being limit there is noting to show as the β-th forcing is uniquely
determined by Pβ′ , β′ < β. Thus F ′ witnesses that P1 × P2 is 1-allowable.

It follows from the definition that for those Am where we found f -values
of rank 0 in a 1-allowable iteration, these f -values are valid ones as they will
stay in Am throughout the 1-allowable iteration.

So 1-allowable forcings already provide a first step in finding reasonable
candidates for the fm-values. Nevertheless there are still issues, stemming
from the usual “moving target” problem. Indeed, when defining 1-allowable
we ask at every stage if we can find a pair (x, y) for Am such that (x, y) will
remain in Am for all additional 0-allowable P′. But when moving on in our
1-allowable iteration we will not just produce a 0-allowable iteration, we will
in fact produce a 1-allowable iteration, so we should additionally ask at every
stage whether we can find (x, y) such that (x, y) can not be kicked out of Am
by a further 1-allowable forcing. After all, these new pairs (x, y) would be
good candidates for our uniformizing fm as well, as long as we continue to
force with allowable forcings which are also 1-allowable which is exactly what
we do when forcing with a 1-allowable iteration. This additional question
we add at every stage will yield the notion of 2-allowable, and this reasoning
can now be iterated transfinitely often.

33

3.2.5 α-allowability

We define next a derivative acting on the set of allowable forcings over W .
Inductively we assume that for an ordinal α and any bookkeeping function
F ∈ W , we have already defined the notion of ζ-allowable with respect to
F for every ζ < α. In particular this means that for every ζ < α, we have
defined already a set of rules which, in combination with a bookkeeping
F ∈W will produce over W :

• An allowable forcing P = Pδ = (Pβ : β < δ) ∈ W , the actual forcing
which is used in the iteration. We let Gδ denote a Pδ-generic filter over
W .

• A set I = İGδδ = {(ẋGδ , ẏGδ , ṁGδ , γ̇Gδ) : m ∈ ω, ẋ, ẏ, γ̇ are P-names of
elements of ω, 2ω and ω1 respectively}. The set I ∈W [Gδ] is the set of
potential values for the uniformizing function f , we want to define. We
note that there can be several values (x, y1,m, ξ1), ..., (x, yn,m, ξn) for
one x and one m. We say that (x, y,m) has rank ξ if (x, y,m, ξ) ∈ I.
Again a (x, y,m) can have several ranks. The idea here is to use
the (x, y,m)’s whose rank is minimal and amongst the set of minimal
ranked (x, y,m)’s, we pick the one which has the <-least name, in some
previously fixed well-order of H(ω2)W . This will ensure that our choice
is well-defined.

Similar to our already established jargon, if the result of applying the rules
for η-allowable over the model W and F ∈ W is the pair (P, I) ∈ W then
we say that P is η-allowable with respect F (over W), or often just P is
η-allowable if there is an F , I such that P is η-allowable with respect to F .

Given that we know everything above we aim to define the derivation
of the < α-allowable forcings over W which we call α-allowable (again over
W). The definition is a uniform extension of 1-allowability. A δ < ω1-length
iteration P = (Pβ : β < δ) ∈ W is called α-allowable over W (or relative
to W) if it is recursively constructed using two ingredients. First a book-
keeping function F ∈ W , F : δ → W 3, where for every β < δ, we write
F (β) = ((F (β)0, (F (β))1, (F (β))2) for the according values of the coordi-
nates. Second a set of rules which are similar to the ones for 1-allowability,
which add two additional rules to the already existing ones with every appli-
cation of the derivative, and which determine along with F how the iteration
P and the set of f -values I are constructed.

The infinite set of rules shall be defined now. We fix a bookkeeping
function F ∈ W , Fδ → W 3 for δ < ω1. We assume that we are at stage β
of our construction and we assume inductively that we already created the
following list of objects:

• The forcing Pβ ∈ W up to stage β, along with a Pβ-generic filter
Gβ over W . We let P0 =

∏
i<ω1

C(ω1)L, and write the generic as

34

(gi : i < ω1), where every gi is a C(ω1)-generic filter, hence an ω1-
Cohen set.

• The set Iβ = İ
Gβ
β = {(ẋGβ , ẏGβ , ṁGβ , ζ̇Gβ) : ṁ, ẋ, ẏ, ζ̇ are Pβ-names

of elements of ω, 2ω and ω1 respectively} of already defined, potential
values for the uniformizing function ḟGβ (m, ·). We let I0 = ∅.

We emphasize that the set of possible f -values will change along the
iteration. The iteration is defined in a way, that values of f must be added if
we encounter a new and possible value of ḟGβ (m,x) of lesser rank. Working
in W [Gβ] we shall now define the next forcing of our iteration P(β) together
with a possibly updated set of possible values for the uniformizing function
f(m,x). We assume that F (β)0 = (ẋ, ẏ, ṁ) and let A ⊂ β, A ∈ W be such
that ẋ, ẏ, ṁ are PA = Fη∈AP(η)-names, where we demand that PA ∈ W is
a subforcing of Pβ . Let GA := Gβ � A. We let x = ẋGA , y = ẏGA and ṁGA

and split into cases:

(a) There is an ordinal ζ < α+ 1, which is chosen to be minimal for
which the following holds:

First we collect all PA-names for reals ȧ. For every such PA-name
ȧ we pick the <-least, nice name such that ȧGβ = ḃGβ and collect
these names ḃ into a set called C. We assume that there is a
<-least, nice PA-name ẏ0 in C such that ẏ0

GA = y0,

W [Gβ] |= (x, y0) ∈ Am

and for which there is no ζ-allowable forcing R . Pβ , R ∈ W
extending Pβ such that W [Gβ] |= “R/Gβ (x, y0) /∈ Am”. If this
is the case, then we set the following:

• We assume first that F (β)1 = η̇ where η̇ is a PA-name of a count-
able ordinal, η̇GA = η and such that gη has not been used as a
coding area by any of the factors of Pβ . Assume also that F (β)2 is
a triple (ẋ, ż, ṁ) of PA-names and ẋGA = x, żGA = z 6= y0, ṁ

GA =
m. We let

P(β) := Pgη(x,z,m).

If the bookkeeping function is not of the desired form we just pick
the <-least names of objects of the desired form and use them to
define the forcing. That is, in this situation, we pick the <-least
PA-name for a countable ordinal η̇, such that gη has not been used
as a coding area by any of the factors of Pβ . Further we let ż be
the <-least PA name of a real such that żGA 6= y0 and let

P(β) := Pgη(x,z,m).

35

We also let Pβ+1 = Pβ ∗ P(β) and let Gβ+1 = Gβ ∗ G(β) be its
generic filter.
• We set a new f value, i.e. we set f(m,x) := y0 and assign in
W [Gβ+1] the rank ζ to the value (x, y0,m). We update IGβ+1

β+1 :=

I
Gβ
β ∪ {(x, y0,m, ζ)}.

(b) We assume that case (a) is not true, i.e. for each ζ < α and each
pair of reals, the pair can be forced out of Am by a ζ-allowable forcing
extending our current one. In that situation we again let the book-
keeping F fully guess what to force with. We assume that F (β)1 is
a PA-name of a countable ordinal η̇, let η̇GA = η and assume that gη
has not been used as a coding area by one of the factors of Pβ . We
assume that F (β)2 is a nice PA name for a pair of reals of the form
(ẋ′, ẏ0) such that ẋ′

GA
= x Define P(β) := Pgη(x,y0,m). We let G(β) be a

P(β)-generic filter over W [Gβ] and Gβ+1 = Gβ ∗G(β).

Further we do not update our set Iβ of preliminary values for f , i.e.
Iβ+1 := Iβ.

Otherwise, we pick as always the <-least PA names of the desired
objects gη and (x, z,m) and force with P(β) := Pgη(x,z,m).

At limit stages η of α + 1-allowable forcings we take the direct limit of
the initial segments, i.e.

Pη := dir lim(Pν : ν < η).

Finally we let

I
Gη
η := {(m,x, y, ζ) : ∃ξ < η((m,x, y, ζ) ∈ IGξξ)}.

This ends the definition of the rules for α + 1-allowability over the ground
model W . To summarize:

Definition 3.15. Assume that F ∈ W , F : η → W 3 is a bookkeeping
function and that P = (Pβ : β < η) and I = (Iβ : β < η) is the result
of applying the above defined rules together with F over W . Then we say
that (P, I) is α + 1-allowable with respect to F (over W). Often, I is clear
from context, and we will just say P is α + 1-allowable with respect to F .
We also say that P is α+ 1-allowable over W if there is an F such that P is
α+ 1-allowable with respect to F .

We add a couple of remarks concerning the definition of α+ 1-allowable:

• Once we find a fm(x)-value of rank ζ < α in an α-allowable iteration,
(x, fm(x)) will remain an element of Am by all further outer models
obtained by a ζ-allowable extension.

36

• The case (a) is the iterated version of case (a) in the definition of
1-allowable. Note that we minimize on the rank ζ of the potential
f(m,x)-value. The reason for this is that this makes it easier to show
that the notion of α-allowable becomes stronger and stronger as we
increase α, as we will prove later. After we minimized on the rank, we
minimize on the <-least set of triples of names ẋ, ẏ, ṁ).

• The definition of α+ 1-allowable adds one more constraint to the def-
inition of α-allowable in case (a) in that it considers not only forcings
which are β-allowable for β < α, but also considers α-allowable forc-
ings as well. So it is intuitively clear, and will be proved in Lemma
3.16 below, that the set of α-allowable forcings is shrinking as α in-
creases. This in effect yields that there are more and more pairs of
reals (x, y) ∈ Am which can not be kicked out of Am any more by
additional α-allowable forcings, as α grows. Which in turn yields more
cases where (a) must apply, so more constraints in the definition of α
allowable as α rises. So the shrinking process of α-allowable forcings,
as α increases, reinforces itself due to the choice of the definitions.

Lemma 3.16. Work in W . If P is β-allowable over W and α < β, then P
is α-allowable over W . Thus the sequence of α-allowable forcings (over W)
is decreasing with respect to the ⊂-relation.

Proof. Let α < β, let P be a β-allowable forcing and let F ∈ W be the
bookkeeping function which, together with the rules from above determine
P ∈W . We will show that there is a bookkeeping function F ′ ∈W such that
P can be seen as an α-allowable forcing determined by F ′. The idea is to
let the new bookkeeping function F ′ be such that it simulates the reasoning
we would do for a β-allowable forcing at every stage, even though it is an
α-allowable forcing.

We start with setting F ′(η) = F (η) until we hit a stage where a dif-
ference in what case applies occurs for the first time. Let γ be the least
stage such that F together with the rule applied at γ, when considering P as
an α-allowable forcing yields a different case than when considering P as a
β-allowable forcing. By the minimality of γ, Pγ must coincide when consid-
ering Pγ as an α and a β-allowable forcing respectively. It is clear from the
definitions, that at stage γ, when working with the β-allowable rules case
(a) must apply whereas case (b) applies when working with the rules for
α-allowable.

So F (γ)0 = (ẋ, ẏ,m), and as usual we let Gγ be the generic filter for the
forcing and let x = ẋGγ and y = ẏGγ , and there is a potential f(m,x)-value
of rank ≤ β in the universe W [GA], where A ⊂ γ is such that ẋ and ẏ are
in fact PA-names, (x, y) ∈ W [GA]; on the other hand there is no potential

37

f(m,x)-value of rank ≤ α. To be more precise, at stage γ when working
with the rules for β-allowable we obtain:

• A quadruple (x, y0,m, ξ) ∈ Iγ+1, where ξ ∈ (α, β] and (x, y0) ∈W [GA],
where A ⊂ γ is such that ẋ, ẏ0 are in fact PA-names.

• A PA-name for a countable ordinal η̇, where η̇GA has not been used as
a coding area by a factor of PA.

• A forcing P(γ) = Pgη(x,z,m) for a real z 6= y0.

We define F ′(γ) as follows: F ′(γ) = (F ′(γ)0, F
′(γ)1, F

′(γ)2) such that
F ′(γ)0 = F (γ)0 and such that P(γ) are guessed correctly by F ′(γ). To be
more precise we let F ′(γ)i be Pγ-names such that uniformly, for any Pγ-
generic filter Gγ :

• F ′(γ)
Gγ
2 := η.

• F ′(γ)
Gγ
1 := (x, z,m)

Note that this definition of F ′ is entirely inW , the use of Gγ in its definition
is uniform and can, as always be removed in the common way.

The upshot is that when applying the rules for α-allowable at stage γ
using F ′, the result is exactly the same as when applying the rules for β-
allowable at γ using F .

To summarize, if γ is the least stage such that we find ourselves in dif-
ferent cases when following the rules for α and β-allowable using F , then
there is an F ′ such that the β-allowable iteration Pγ+1 using F is also an
α-allowable iteration using F ′. But this line of argumentation can be it-
erated. Indeed, after we dealt with (m,x, y) at γ, we can go to the least
stage γ′ > γ where the rules for β-allowable using F yield a different case
than the rules for α-allowable using F ′. We apply the same arguments from
above to see that we can pretend that we are in an α-allowable iteration as
we proceed in P. Until we hit a new triple for which again we use the just
described argument and so on. Thus there is a bookkeeping F ′ such that P
is α-allowable with respect to F ′.

Lemma 3.17. Let F1 : δ1 →W 3 be a bookkeeping function which determines
an α-allowable forcing P1 = (P1

β : β < δ1). Likewise let F2 : δ2 → W 3 be
a bookkeeping function which determines an α-allowable forcing P2 = (P2

β :

β < δ2). Then the product P1 × P2 is α-allowable relative to a bookkeeping
function F ∈W which is definable from F1 and F2.

Proof. The proof is very similar to the already established lemma 3.14. We
will prove it by induction on α. For α = 0 and α = 1 the lemma is true.

38

Now assume that the lemma is true for α. We shall argue that it is also
true for α+ 1.

We shall define a bookkeeping function F ′ such that P1×P2 is 1-allowable
relative to F ′. For ordinals β < δ1 we let F ′(β) = F1(β). Then the (α+ 1)-
allowable forcing which will be produced on the first δ1-many stages is P1.

For β > δ1, we let F ′(β) = F2(β−δ1). Then we claim that F ′ � [δ1, δ1+δ2)
using the rules of (α+ 1)-allowability will produce P2.

First we prove by induction on β ∈ [δ1, δ1 + δ2) that if β is a stage such
that case (b) applies when building the forcing using F ′ over W , then case
(b) also must apply at β − δ1 when building P2 over W using F2 and vice
versa.

Assume first that at stage β − δ1, P2
β−δ1 is defined and case (b) applies

there. That is, if F (β − δ1)0 = (ẋ, ẏ, ṁ) and G2
β−δ1 is an arbitrary P2

β−δ1-
generic filter over W , for every ζ < α + 1 there is a ζ-allowable Q . P2

β−δ1
such that

Q/G2
β−δ1 (ẋ

G2
β−δ1 , ẏ

G2
β−δ1) /∈ A

ṁ
G2
β−δ1

.

But then also P1 × Q . P1 × P2
β is ζ-allowable, by the induction hypothesis

and the previous lemma and

P1 × (Q/G2
β) (ẋG

2
β , ẏG

2
β) /∈ A

ṁ
G2
β

by upwards absoluteness of Σ1
3-formulas. Thus we must be in case (b) at

stage β as well, when defining P1 × P2 using F ′.
On the other hand if we are at stage β ∈ [δ1, δ1 + δ2), F (β)0 = (ẋ, ẏ, ṁ),

G1 × G2
β−δ1 is an arbitrary P1 × P2

β−δ1-generic filter over W and we are in
case (b) when defining the next forcing using F ′, then, for every ζ < α + 1
there is a ζ-allowable Rζ . P1 × P2

β−δ1 such that

Rζ/(G1 ×G2
β−δ1) (x, y) /∈ Am.

But then Rζ . P2
β−δ1 is true, and the set ofRζ ’s witnesses that we must be

in case (b) at stage β − δ1 as well, when defining P2 using F 2 working over
W [G2

β−δ1].
As a consequence we must be in the same cases when defining P1×P2 at

stage β over W and when defining P2 at stage β − δ1 using F2 over W . But
then we let F ′(β) be such that it does exactly what F2(β − δ1) does. This
implies that P1 × P2

β+1 is (α + 1)-allowable with respect to F ′ � β + 1 and
the induction step is proven.

For β being limit there is noting to show as the β-th forcing is uniquely
determined by Pβ′ , β′ < β. Thus F ′ witnesses that P1×P2 is α+1-allowable.

The case where α is limit is identical to the induction step α → α + 1,
modulo the obvious notational changes.

39

It follows that once we encounter a potential fm(x)-value y of rank < α,
in an α-allowable iteration, that (x, y) will remain in Am for the rest of the
α-allowable iteration and for all further α-allowable extensions:

Lemma 3.18. Let (P, I) be α-allowable over W with respect to F of length
η < ω1, let G be P-generic and let (x, y,m, ξ) ∈ I for some ξ < α. Then in
W [G], (x, y) ∈ Am and for every Q . P such that Q is ξ allowable it holds
that Q/G (x, y) ∈ Am.

Proof. Let β be the least stage in P such that (x, y,m, ξ) is added to Iβ .
Then, as ξ < α, we must be in case (a) at stage β. This means that we
found a pair (x, y) which can not be kicked out of Am with a further ξ-
allowable forcing, for a ξ < α as in the lemma. The tail however is an
α-allowable forcing over W [Gβ], hence also ξ-allowable and thus (x, y) ∈ Am
throughout the tail of the iteration.

Adding an additional Q which is ξ-allowable to the tail of P does not
alter the argument, which proves the second assertion of the lemma.

Lemma 3.19. Work in W . For any α, the set of α-allowable forcings is
nonempty.

Proof. By induction on α. If there are α-allowable forcings over W , then
every bookkeeping function F ∈ W , F : δ → W 3 together with the rules
(a) and (b) will create a nontrivial α + 1-allowable forcing just by the way
we chose to define α+ 1-allowability. For limit ordinals, the same reasoning
applies.

As a direct consequence we obtain that there must be an ordinal α such
that for every β > α, the set of α-allowable forcings over W must equal
the set of β-allowable forcings over W . Indeed every allowable forcing is an
ℵ1-sized partial order in W , thus there are only set-many of them (mod-
ulo isomorphism), and the decreasing sequence of α-allowable forcings must
eventually stabilize at a set which also must be non-empty.

Definition 3.20. Let α0 be the least ordinal such that for every β > α0, the
set of α0-allowable forcings over W is equal to the set of β-allowable forcings
over W .

The set of∞-allowable forcings can also be described in the following way.
A δ < ω1-length iteration P = (Pα : α < δ) is∞-allowable if it is recursively
constructed following a bookkeeping function F and a modified version of
the two rules from above: we ask in (a) whether there exists an ordinal ζ at
all for which the antecedens of (a) is true. If there is such an ordinal ζ we
proceed as described in (a) if not we use (b). Note that for m ∈ ω and a
real x we will have several potential y’s such that (x, y,m, ξ) ∈ I as we go
along in an ∞-allowable iteration. The ranks of the potential values form a

40

decreasing sequence of ordinals, thus, once we set a value f(m,x), we can be
sure that eventually there will be a value for f(m,x) which will not change
any more in rank.

3.3 Definition of the universe in which the Π1
3 uniformization

property holds

The notion of ∞-allowable will be used now to define the universe in which
the Π1

3-uniformization property is true. We let W be our ground model and
start an ω1-length iteration whose initial segments are all ∞-allowable with
respect to W . We are using the following rules in combination with some
bookkeeping F ∈ W . The actual properties of F are not really relevant, F
should however satisfy that

• F : ω1 → H(ω1) is surjective.

• For every x ∈ H(ω1), the set F−1(x) should be unbounded in ω1.

Inductively we assume that we are at stage β < ω1 of our iteration and the
allowable forcings Pβ , Rβ have been defined already. We assume additionally
that the value F (β) = (F (β)0, F (β)1) is in fact a pair of elements in H(ω1)
and F (β)0 = (η1, η2,m) where η1 ≤ β and η2 are ordinals and m ∈ ω. We let
(ẋ, ẏ) be the η2-th nice Pη1 name of a pair of reals relative to our wellorder
< of H(ω2)W . If we set ẋGβ = x, ẏGβ = y then we further assume that
W [Gβ] |= (x, y) ∈ Am. Recall that α0 is the least ordinal such that the
notion of α-allowable stabilizes. We split into two main cases, following the
definition of α0-allowable.

(1) We work in W [Gη1] and assume the following.

• There is an ordinal ζ ≤ α0, which is chosen to be minimal for
which
• there is a <-least pair of nice Pη1-names (ẋ′, ẏ′) such that ẋ′Gη1 =
x and ẏ′Gη1 = y0 and W [Gβ] |= (x, y0) ∈ Am and for every ζ-
allowable R ∈W [Gβ],

R (x, y0) ∈ Am.

If this is the case, then we set the following:

• We pick the <-least triple of Pη1-names (ẋ, ż,m) such that if
ẋGη1 = x, żGη1 = z 6= y0 and such that (x, z,m) has not been
coded yet into ~S by Pβ . We let P(β) := P(x,z,m). We also let
Pβ+1 = Pβ ∗ P(β) and let Gβ+1 be its generic filter.
• We set a new f value, i.e. we set f(m,x) := y′ and assign the

rank ξ to the value. We update I
G′β+1

β+1 := I
G′β
β ∪ {(x, y′,m, ξ)}.

41

(2) We assume that case (a) is not true. So for every ξ ≤ α0, in particular
for ξ = α0, every pair (x, z) ∈ W [Gη1] (so in particular for the pair
(x, y)) there is a further α0-allowable (P(x,y) . Pβ , such that

Px,y/Gβ (x, y) /∈ Am

We pick the <-least such α0-allowable forcing P(x,y) and use the tail
Px,y/Gβ at stage β, and a generic filter Gx,y . Gβ for Px,y/Gβ over W
and set Gβ+1 := Gx,y.

Then we update Iβ+1 to be Iβ ∪ Ix,y.

As always we use mixed support. This ends the definition of our iteration
((Pβ, Iβ) : β < ω1). We set Pω1 to be the direct limit of (Pβ : β < ω1), and
Iω1 =

⋃
β<ω1

Iβ .

We next derive its basic properties. First we note that the iteration is
such that there is an F ′ ∈W , F ′ : ω1 →W , and such that for every δ < ω1,
((Pβ, Iβ) : β < δ) is α0-allowable over W with respect to F ′ � δ. Indeed the
bookkeeping F can be used to readily derive such an F ′ ∈W.

Fact 3.21. The just defined iteration (Pω1 , Iω1) ∈ W is such that every
initial segment is α0-allowable over W relative to a fixed F ′ ∈W .

As a consequence, the fm-values of rank < α0 we define as we go along
the iteration are such that they will certainly belong to Am in the final model
by Lemma 3.18. We let Gω1 be Pω1-generic over W . What is left, is to show
that in W [Gω1], for every m ∈ ω and every real x such that Am,x 6= ∅, we do
have exactly one pair of reals (x, y) ∈ Am such that (x, y,m) is not coded
into ~S. The next lemma does exactly that, and is the main step in proving
that the Π1

3-uniformization property holds true in W [Gω1].

Lemma 3.22. In W [Gω1] the following dichotomy holds true:

1. Either (x,m) is such that there is a real y and ξ < α0 such that
(x, y,m, ξ) ∈ I. Then there is a unique real y0 such that

W [Gω1] |= “(x, y0) ∈ Am ∧ (x, y0,m) is not coded somewhere into ~S”.

2. Or (x,m) is such that for every real y, if ξ < α0 then (x, y,m, ξ) /∈ I,
in which case

W [Gω1] |= “The x-section of Am is empty”

Proof. We assume first that the assumptions of case 1 are true, i.e. there is
a y and ξ < α0 such that (x, y,m, ξ) ∈ I. Then there is a real y0 ∈ W [Gω1]
(and an attached ordinal ξ0 < α0) whose Pω1-name is <-minimal among all
such names. We let β be the least stage where we add (x, y0,m, ξ0) to Iβ .

42

Claim. W [Gω1] |= (x, y0) ∈ Am.

Proof of the first Claim. This follows immediately from the lemma 3.18.

Claim.

W [Gω1] |= “y0 is the unique real such that

(x, y0,m) is not coded somewhere in the ~S-sequence.”

Proof of the second Claim. We shall prove the second claim. First we show
that (x, y0,m) is not coded somewhere into the ~S-sequence. It is clear that
from stage β on, we will not code (x, y0,m) into ~S. So the only possibility
that we coded up (x, y0,m) is that there is a stage η < β of our iteration
Pω1 where we coded (x, y0,m) into ~S. At stage η, we can not be in case 2, as
(x, y0) and the fact that we are in case 1 at stage β, witness that we must be
in case 1 at η. So we must be in case 1, but we add a different (x, y′,m, ξ0) to
Iη, but its <-least name must be <-less than the <-least name for (x, y0,m,)
which is a contradiction to our assumption.

In order to see that it is the unique real of the form (x, y,m) which is
not coded, it is sufficient to note that for every other y 6= y0, (x, y,m) will
be coded into ~S by the rule (1) of our definition.

Thus Claim 2 is proved, which also finishes the proof of the Lemma under
the assumptions of the first case of our Lemma.

We shall prove now that under the assumptions of the second case of
our Lemma, its conclusion does hold, i.e. we need to show that if (x,m) is
such that for every real y, if ξ < α0 then (x, y,m, ξ) /∈ I, then W [Gω1] |=
“The x-section of Am is empty”.

But under these assumptions, whenever we are at a stage β such that
there is a y such that F (β) = (x, y,m), then case 2 of the definition of
Pω1 must apply. But for every such y, at stage β, we ensure with an α0-
allowable forcing that W [Gβ+1] |= (x, y) /∈ Am. By upwards absoluteness of
Σ1

3-formulas we obtain in the end

W [Gω1] |= ¬∃y((x, y) ∈ Am).

This finishes the poof of the Lemma.

Corollary 3.23. In W [Gω1] the Π1
3-uniformization property is true. For Am

an arbitrary Π1
3-set, we get that

y = f(m,x)

if and only if

43

(x, y) ∈ Am and ¬∃r(∀M(M is countable and transitive and M |=
ZF− + “ℵ2 exists” and ωM1 = (ωL1)M and r, (x, y,m) ∈ M → M |=
ϕ((x, y,m))).

Proof. It suffices to note that the formula on the right and side is indeed Π1
3.

This is clear as it is of the form Π1
3 ∧ ¬Σ1

3.

4 Forcing over canonical inner models with Woodin
cardinals

4.1 Coding over M1

As stated in the beginning, we can apply this proof in the context of canon-
ical inner models with Woodin cardinals. Recall that under the axiom of
projective determinacy PD, the odd levels of the projective hierarchy will
satisfy the uniformization property. Our construction will yield a universe
in which the Π1

4-uniformization property is true, thus producing a model for
the “wrong" side for the first time. The complexities in its proof may serve as
another example of empiric evidence, that the regularity properties implied
by PD are natural, and violating them needs considerable effort. The proof
which we present should, modulo some technicalities lift to higher levels of
the projective hierarchy. The theorem could also be proved using L[U] as
our ground model, or even weaker, working over L#, the minimal transitive
class-sized model which is closed under sharps for sets, reducing the large
cardinal assumption, but at the cost of not being liftable, this is why we
settle to prove it using M1 as the ground model.

Theorem 4.1. Assume that the canonical inner model with one Woodin
cardinal, M1, exists. Then there is a generic extension of M1, in which the
Π1

4-uniformization property is true.

The proof of the theorem is closely modeled after the L case. We will first
introduce some of the properties of M1 which are crucial for our needs, but
assume from this point on that the reader is familar with the basic notions
of inner model theory. Recall that M1 is a proper class premouse containing
a Woodin cardinal (see [21], pp. 81 for a definition of M1). Every initial
segment JM1

β is ω-sound and 1-small, where we say that a premouse M is
1-small iff whenever κ is the critical point of an extender on theM-sequence
then

JMκ |= ¬∃δ(δ is Woodin).

The reals of M1 admit a Σ1
3-definable wellorder (see [21], Theorem 4.5),

the definition of the wellorder makes crucial use of a weakened notion of
iterability, the so-called Π1

2-iterability which we shall introduce.
Let M be a premouse, T be an ω-maximal iteration tree b a branch

through T and α an ordinal. Then b is α-good if, whenever N =MTb or N

44

is the α-th iterate of some initial segment P EMTb using a single extender
E (and its images under the iteration map) on the P-sequence, then α is in
the wellfounded part of N . Then we say that a premouseM is Π1

2-iterable,
if player II has a winning strategy in the game G′ω(M, 1), where G′ω(M, 1),
is defined just as the ordinary weak two player game WGω(M, 1) (see e.g.
[22] pp. 65 for a definition), with the exception that player I not only plays
an ω-maximal, countable putative iteration tree T but additionally has to
play a countable ordinal α < ℵM1

1 . Then player II does not have to play a
wellfounded branch through T (as it would be the case for iterability), but
instead can play a cofinal branch b through T such that b is α-good in order
to win.

The winning strategy for II for G′ω(M, 1) guarantees that M can be
compared to any countable premouse which is an initial segment of M1.

Lemma 4.2. Let M and N be ω-sound premice which both project to ω.
Assume that M is an initial segment of M1 and N is Π1

2-iterable, and let
Σ denote the winning strategy for player II in Gω(M, ω1 + 1). Then we can
successfully compareM and N and consequentiallyM /N or N EM.

It is relatively straightforward to check that the set of reals which code
Π1

2-iterable, countable premice is itself a Π1
2-definable set in the codes (see

[21], Lemma 1.7). Modulo the last lemma, this implies that there is a nice
definition of a cofinal set of countable initial segments ofM1 in ω1-preserving
forcing extensions M1[G] of M1, (in fact this definiton holds in all outer
models of M1 with the same ω1):

Lemma 4.3. Let M1[G] be an ω1-preserving forcing extension of M1. Then
in M1[G] there is Π1

2-definable set I of premice which are of the form JM1
η

for some η < ω1. I is defined as

I := {M ctbl premouse : M is Π1
2-iterable, ω-sound and projects to ω},

and the set
{η < ω1 : ∃N ∈ I(N = JM1

η)}
is cofinal in ω1.

In particular M1|ω1 is Σ1(ω1)-definable in ω1-preserving generic exten-
sions of M1, as x ∈ M1|ω1 if and only if there is a transitive U |= ZF−,
ω1 ⊂ U , ℵU1 = ℵ1 such that U |= ∃M ∈ I ∧ x ∈ M, which suffices us-
ing Shoenfield absoluteness. A similar argument also shows that {M1|ω1}
is Σ1(ω1) definable, as we can successfully compute it in transitive ω1-
containing models, via the following Σ1(ω1)-formula:

(∗) X = M1|ω1 ⇔ ∃U(U is a transitive model of ZF− ∧ ω1 ⊂ U∧
U |= ∀α < ω1∃r ∈ I(α ∈ (r ∩Ord))∧

X is transitive and X ∩Ord = ω1∧
∀x ∈ I(x ⊂ X) ∧ ∀y ∈ X∃x ∈ I(y ∈ x))

45

Indeed, if the left hand side of (∗) is true, then any transitive U which
contains M1|ω1 as an element and which models ZF− will witness the truth
of the right hand side, which is an immediate consequence of Shoenfield
absoluteness.

If the right hand side is true, then, using the fact that Σ1
3-statements are

upwards absolute between U and the real world, U will contain an ω1-height,
transitive structure X which contains all countable initial segments of M1,
and such that every y ∈ X is included in some element of M1|ω1, in other
words X must equal M1|ω1.

We shall argue now, that the coding forcings, we defined earlier over the
constructible universe, can be adapted to M1. The first thing to note is
that M1|ω1 can define a ♦-sequence in the same way as Lω1 can. Indeed, as
M1 has a ∆1

3-definable wellorder of the reals whose definition relativizes to
M1|ω1 we can repeat Jensen’s original proof in M1 to construct a candidate
for the ♦-sequence, via picking at every limit stage α < ω1 the <M1-least pair
(aα, cα) ∈ P (α)×P (α) which witnesses that the sequence we have created so
far is not a ♦-sequence. The proof that this defines already a witness for ♦
is finished as usual with a condensation argument. Hence we shall show that
if JM1

β is least such that (aα : α < ω1) and (A,C) ∈ JM1
β , where (A,C) is

the <M1-least witness for (aα)α<ω1 not being a ♦-sequence, then there is an
countable N ≺ JM1

β such that the transitive collapse N̄ is an initial segment
of M1.

To see that in fact every such N collapses to an initial of M1, recall
the condensation result as in [22], Theorem 5.1, which we can state in our
situation as follows:

Theorem 4.4. LetM be an initial segment ofM1. Suppose that π : N̄ →M
is the inverse of the transitive collapse and crit(π) = ρN̄ω , then either

1. N̄ is a proper initial segment ofM, or

2. there is an extender E on theM-sequence such that lh(E) = ρN̄ω , and
N̄ is a proper initial segment of Ult0(M, E).

We shall argue, that in our situation, the second case is ruled out, hence
every N ≺ JM1

β collapses to an initial segment of M1. Indeed, due to the
ω-soundness of JM1

β , every N ≺ JM1
β will satisfy that

ρNω = ρ
JM1
β

ω = ω
JM1
β

1 ,

hence crit(π) = ωN̄1 = ρN̄ω by elementarity of π.
But N̄ |ωN̄1 = N |ωN̄1 , and as N̄ |ωN̄1 thinks that ω is its largest cardinal,

N |ωN̄1 must believe this as well. But then there can not be an extender on the
N -sequence which is indexed at ωN̄1 , as otherwise N |ωN̄1 would think that ωN̄1

46

is inaccessible, which is a contradiction. Hence, the condition lh(E) = ρN̄ω is
impossible and all that is left is case 1, so N̄ is an initial segment of M1.

This shows that Jensen’s construction of a ♦-sequence succeeds when
applied to M1. It is straightforward to verify that the recursive construction
can be carried out inM1|ω1 by absoluteness. Consequentially the ♦-sequence
is a Σ1-definable class over M1|ω1.

We can use the ♦-sequence to construct an ω1-length sequence of M1-
subsets of ω1 which are stationary, co-stationary just as in L. We let Rα
be {β < ω1 | aβ = rα ∩ β}, where rα is the α-th M1 real in its canonical
wellorder. The sequence (Rα : α < ω1) is Σ1(ω1)-definable, which works for
all ω1-preserving generic extensions of M1, by our discussion above. Indeed
in order to find Rα in some M1[G], where G is a generic filter for an ω1-
preserving forcing, then the formula (∗) will define {M1|ω1} in a Σ1(ω1)-way,
and the latter can internally define Rα.

Hence, we can reproduce the stationary kill forcings we used to obtain
W = L[Q0][Q1][Q2] from L in exactly the same way over M1 and obtain an
ω1-preserving, ω-distributive generic extension W ∗ over M1, in which there
is a Σ1(ω1)-definable sequence of independent ω1 trees ~S, which are Suslin
in the inner model M1[Q0][Q2].

We shall work in W ∗ from now on, and reproduce the coding forcings we
defined inW . Given an arbitrary real coding a r triple (x, y,m) we can define
the coding forcing P(x,y,m) in almost the same way as we did over W , the
only exception is that we use C(ω1)M1 , i.e. ω1-Cohen forcing as evaluated
in M1 as the first factor. If g ⊂ ω1 we let h be the set one obtains when
applying the <M1-least bijection ρ : ωω1 → ω1, ρ ∈ M1 pointwise to g, i.e.
h = ρ“{g ∩ α : α < ω1}. As before, the set h determines which ω-blocks of
~S should have written the (x, y,m)-pattern into it. To emulate the previous
jargon, we say that h codes an M1-sequence of ordinals, if there is a g such
that h = ρ“{g ∩ α : α < ω1}. We collect the set M1|ω1, the relevant clubs
throughM1-stationary sets, and the branches through the Suslin trees which
create the pattern which codes up w = (x, y,m), the set h ⊂ ω1 and write
everything into one set X ⊂ ω1. Note that if γ ∈ h is arbitrary, if Lζ [X] is
the least ZF−-model which contains X ⊂ ω1, we obtain that

Lζ [X] |=n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch and
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch

Our next goal is to rewrite the setX, such that already suitable countable
models can read off w. Here we our argument has to diverge from theW -case,
as M1’s definition is more complicated.

We first note that any transitive, ℵ1-sized ZF− model M which contains

47

X will satisfy

(M,∈,JM1
ω1

) |=“Decoding X yields a model m and m = JM1
ω1

=
⋃

JM1
η ∈I

JM1
η ,

some clubs ~c through elements of m which code Suslin trees ~s

some branches ~b through ~s,
a set h ⊂ ω1 which codes an M1-sequence of ordinals such that
for the least ZF− model of the form Lζ [X] we have that
Lζ [X] |= ∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch

n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch))

In particular, this will be true for a ZF− + “ℵ2 exists” model of the form
(Lξ[X],∈,JM1

ω1
), ξ < ℵ2. If we consider the club

C := {η < ω1 : ∃(M,∈, P) ≺ (Lξ[X],∈,JM1
ω1

)(|M | = ℵ0 ∧ η = ω1 ∩M)}

then if (N,∈) is an arbitrary countable transitive model of ZF− such thatX∩
ωN1 ∈ N and ωN1 ∈ C, then N will decode out of X ∩ωN1 exactly what (M̄,∈
,JM1

η) decodes, where the latter is the transitive collapse of (M,∈, P) ≺
(Lξ[X],∈,JM1

ω1
), where X ∈ M,M ∩ ω1 = ωN1 . In particular, if we denote

the ∆1-definable decoding functions with dec1, dec2 and dec3 respectively,
then we obtain

N |= ∃m1 ∃~c∃~b(dec1(X ∩ ωN1) = m1 ∧ dec2(X ∩ ωN1) = ~c

∧ dec3(X ∩ ωN1) = ~b ∧ dec4(X ∩ ωN1) = h ∩ ωN1
and for the least ZF− model of the form Lζ [X ∩ ωN1] we have that

Lζ [X ∩ ωN1] |= ∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch))).

Further, as dec1(X ∩ ωN1) = m1 = JM1
η , we get that

dec1(X ∩ ωN1) ∈ I.

Now let the set Y ⊂ ω1 code the pair (C,X) such that the odd entries
of Y should code X and if Y0 := E(Y) where the latter is the set of even
entries of Y and {cα : α < ω1} is the enumeration of C then

1. E(Y) ∩ ω codes a well-ordering of type c0.

2. E(Y) ∩ [ω, c0) = ∅.

3. For all β, E(Y) ∩ [cβ, cβ + ω) codes a well-ordering of type cβ+1.

4. For all β, E(Y) ∩ [cβ + ω, cβ+1) = ∅.

48

We obtain a version of the which works for suitable countable transitive
models:

LetM be an arbitrary countable transitive model of ZF−+“ℵ2 exists”

for which there is a JM1
η ∈ I such that ωM1 = ω

JM1
η

1 and JM1
η ∈ M .

Assume that Y ∩ ωM1 ∈M then M can decode out of Y ∩ ω1,

– a model m,

– some clubs ~c through m-stationary sets ~s, (such that of every
consecutive pair in ~s exactly one of the pair is not stationary
anymore as witnessed by an element of ~c), which in turn yield a
sequence ~s of m-Suslin trees;

– a set h ⊂ ωM1 such that ∀α < ωM1 (h ∩ α ∈ m) and which codes
an M1-sequence of ordinals

– and some branches ~b through elements of ~s such that for the least
ZF− + “ℵ2 exists”-model of the form Lζ [m,~s,~b]:

Lζ [m,~s,~b] |=∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch))).

Moreover m is an M1 initial segment as seen from the outside, i.e.
m = JM1

η ∈ I.

Thus we have a local version of the property (∗). In the last step, we use
almost disjoint coding forcing again, to obtain a real rY which codes our set
Y ⊂ ω1 relative to the JM1

ω1
-definable almost disjoint family of reals. Thus

we obtain the following formula ψ((x, y,m), rY) holds, where ψ((x, y,m), rY)
is defined to be:

For M an arbitrary countable transitive model of ZF− + “ℵ2 exists”,

and rY ∈M and for which there is a JM1
η ∈ I such that ωM1 = ω

JM1
η

1

and JM1
η ∈ M . Assume that rY ∈ M then M , relative to the a.d.

family of reals from JM1
η , can decode out of rY the following

– a model m,

– some clubs ~c through m-stationary sets ~s, (such that of every
consecutive pair in ~s exactly one of the pair is not stationary
anymore as witnessed by an element of ~c) which in turn yield a
sequence ~s of m-Suslin trees;

– a set h ⊂ ωM1 such that ∀α < ωM1 (h ∩ α ∈ m) and which codes
an M1-sequence of ordinals

49

– and some branches ~b through elements of ~s, whose indices live on
ω-blocks with starting values in h such that the least ZF−+“ℵ2

exists” model of the form Lζ [m,~c,~b]

Lζ [m,~c,~b] |=|=∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch)).

Moreover m is an M1 initial segment as seen from the outside, i.e.
m = JM1

η ∈ I.

A straightforward calculation shows that the statement ψ((x, y,m), rY) is of
the form (Σ1

3 → Π1
3), thus it is a Π1

3-formula, and stating the existence of
such a real rY is Σ1

4.
The existence of a real r witnessing ψ((x, y,m), r) is sufficient to conclude

that L[r] contains branches through ℵ1-many trees from ~S.

Lemma 4.5. Let w be a real which codes (m,x, y) ∈ (ω× 2ω × 2ω) and let r
be such that ψ((x, y,m), r) is true. Then, working inside L[r], there is a set
h ⊂ ω1 such that ∀α < ω1(h∩α ∈M1|ω1), such that h codes an M1-sequence
of ordinals and such that

∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch

Proof. We note first that ψ((x, y,m), r) must also be true (ignoring its state-
ments involving I) for models of uncountable size where we replace JM1

η with
JM1
ω1

. Indeed, if M would be an uncountable, transitive model containing r
and JM1

ω1
for which ψ((x, y,m), r) is wrong, then we let N̄ be the transitive

collapse of N ≺ M , r,JM1
η ∈ N and N̄ would reject ψ((x, y,m), r) as well,

even though N̄ is of the right form, which gives us a contradiction.
But if ψ((x, y,m), r) holds for arbitrarily large models M , it must be

true in the universe L[r]. Indeed if some ℵ1-sized ZF−-model of the form
Lζ [M, ~C, ~B], where M, ~C, ~B are just the unions of the computations of m,~c
and ~b in suitable countable transitive models of increasing (with limit ω1)
ordinal height, then first note that M = M1|ω1 and Lζ [M, ~C, ~B] sees that
there is a set h ⊂ ω1 such that ∀α < ω1(h ∩ α ∈M1|ω1) such that

Lζ [M, ~C, ~B] |=|=∀γ ∈ h(n ∈ (x, y,m)→ Sωγ+2n+1 has an ω1-branch
n /∈ (x, y,m)→ Sωγ+2n has an ω1-branch)).

and the computation of ~S must be correct. As the existence of an ω1-branch
through Sα is upwards absolute to L[r] we obtain that indeed, in L[r], there
is a set h of desired form such that w = (x, y,m) is coded at every γ-th
ω-block of ~S for γ ∈ h.

50

So to summarize our discussion so far, if we letW ∗ be our ground model,
which is defined as reproducing the move from L to W with M1 as starting
point, then there is a way of coding arbitrary reals x into the ~S-sequence,
and the statement “x is coded into ~S” is Σ1

4(x).
Consequentially we can reproduce the proof of the Π1

3-uniformization
property over W ∗. We list all the Π1

4-formulas, form the set of ∞-allowable
forcings overM1 and eventually define an ω1-lenght iteration of∞-allowable
forcings just as before. The only changes are that the coding argument has
to be altered as described above, and the use of the two-step Σ1

3-generic
absoluteness of M1 instead of Shoenfield absoluteness, which makes it pos-
sible to uniformize Π1

4-formulas. The generic two-step Σ1
3 absoluteness of

M1 follows from M1 being closed under sharps and the well-known result of
Martin-Solovay and Woodin (see [4], Theorem 3). This ends the hopefully
sufficiently detailed sketch of the proof of Theorem 4.1.

4.2 Forcing over Mn

This section shall outline how to make the adjustments when applying our
forcing to the canonical inner models with n-many Woodin cardinals, de-
noted as usual with Mn. For every such Mn, there exists a notion of Π1

n+1-
iterability, which is sufficient to characterize countable initial segments of
Mn, even in our ccc generic extensions of Mn.

Fact 4.6. Let Mn[G] be an ω1-preserving forcing extension of Mn. Then in
Mn[G] there is Π1

n+1-definable set In of premice which are of the form JMn
η

for some η < ω1. In is defined as

In := {M ctbl premouse : M is Π1
n+1-iterable, ω-sound and projects to ω},

and the set
{η < ω1 : ∃N ∈ I(N = JMn

η)}

is cofinal in ω1.

The sets In will be used to run a coding argument just as described for
M1, with the obvious replacements. The second fact we need concerns generic
(two-step) absoluteness of the Mn’s. This is true because of a generalization
of the Martin-Solovay result due to, most likely Steel and Woodin (see [20],
Lemma 3.7), and the fact thatMn is closed under the x 7→M#

k (x) operation
for k < n and every real x ∈Mn.

Fact 4.7. For every n ∈ ω, Mn is Σ1
n+2-generic absolute for forcings of size

the second largest Woodin cardinal.

These two results suffice to run the proof of the Π1
n+3-uniformization

property as follows: we start with Mn as our ground model and pass first to
W ∗ which contains a Σ1(ω1)-definable sequence of independent Suslin trees.

51

Then, working inW ∗, we list all the Π1
n+3-formulas and repeat the construc-

tion of ∞-allowable forcings over W ∗. The role of Shoenfield absoluteness is
replaced by taking advantage of the generic absoluteness result from above.
We use the Π1

n+1-definable set ofMn initial segments to form with the coding
forcings Σ1

n+3-predicates for “being coded into ~S”, similar to the M1-case.
This will obtain:

Theorem 4.8. For any n ∈ ω, if the canonical inner model with n Woodin
cardinals exists, there is a universe in which the Π1

n+3-uniformization prop-
erty holds.

We believe that the above can be improved, indeed we conjecture that
for every n ∈ ω, the Π1

n-uniformization property can be forced over L.

5 Further possible applications and open problems

In this last section we want to sketch a second application of the proof
method we just presented, and introduce some natural follow-up questions
which are likely very old and have been asked already somewhere else. First
we want to point out that the we expect the proof to be applicable to the
generalized Baire space κ<κ. In particular, the Π1

1-uniformization problem
in κ<κ should (consistently) have a positive solution.

The methods in this paper leave the following question up:

Question 1. Can the Π1
n-uniformization property be forced over L for n > 3?

The method we introduced is limited so far to local effects. It would be
interesting to force a less local or even global behaviour:

Question 2. Given a pair n,m ∈ ω such that n 6= m,n 6= m+ 1. Can one
force a universe in which the Π1

n and the Π1
m uniformization property does

hold simultaneously?

Finally we think that it is very interesting to investigate combinations
of our method with other forcings to generically create models with proper-
ties which usually stem from determinacy assumptions. As a paradigmatic
example we just state one question, though there are many more:

Question 3. Given the existence of a Mahlo cardinal. Does there exists a
model which satisfies the Π1

3-uniformization property and “every projective
set of reals is Lebesgue measureable?”

References

[1] U. Abraham Proper Forcing, Handbook of Set Theory Vol.1. Springer

52

[2] J. Addison Some consequences of the axiom of constructibility, Funda-
menta Mathematica, vol. 46 (1959), pp. 337–357.

[3] J. Baumgartner, L. Harrington and E. Kleinberg Adding a closed un-
bounded set. Journal of Symbolic Logic, 41(2), pp. 481-482, 1976.

[4] A. Caicedo and R.D. Schindler Projective well-orderings of the reals,
Archive for Mathematical Logic 45 (2006), pp. 783-794.

[5] R. David A very absolute Π1
2-real singleton. Annals of Mathematical Logic

23, pp. 101-120, 1982.

[6] V. Fischer and S.D. Friedman Cardinal characteristics and projective
wellorders. Annals of Pure and Applied Logic 161, pp. 916-922, 2010.

[7] S. D. Friedman and D. Schrittesser Projective Measure without Projective
Baire. Memoirs of the AMS 1298, 2020.

[8] M. Goldstern A Taste of Proper Forcing. Di Prisco, Carlos Augusto (ed.)
et al., Set theory: techniques and applications. Proceedings of the confer-
ences, Curaçao, Netherlands Antilles, June 26–30, 1995 and Barcelona,
Spain, June 10–14, 1996. Dordrecht: Kluwer Academic Publishers. 71-82,
1998.

[9] S. Hoffelner NSω1 ∆1-definable and saturated. Journal of Symbolic Logic
86 (1), 2021, pp. 25 - 59.

[10] S. Hoffelner Forcing the Σ1
3-separation property. Accepted at the Journal

of Mathematical Logic (2022).

[11] T. Jech Set Theory. Third Millenium Edition. Springer 2006.

[12] R. B. Jensen and R. M. Solovay. Some applications of almost disjoint
sets.Mathematical Logic and Foundations of Set Theory, pp. 84104, 1970.

[13] A. Kechris Classical Descriptive Set Theory. Springer 1995.

[14] N. Lusin Sur le proble‘me de M. J. Hadamard d’uniformisation des en-
sembles, Comptes Rendus Acad. Sci. Paris, vol. 190, pp. 349–351.

[15] A.D.R. Mathias Surrealist Landscape with Firgures. Periodica Mathe-
matica Hungarica Vol. I0 (2-3), (1979), pp. 109–175

[16] T. Miyamoto ω1-Suslin trees under countable support iterations. Funda-
menta Mathematicae, vol. 143 (1993), pp. 257–261.

[17] S. Müller, R. D. Schindler and W. H. Woodin Mice with finitely many
Woodin cardinals from optimal determinacy hypotheses, Journal of Math-
ematical Logic, vol. 20 (2020).

53

[18] Y. Moschovakis Descriptive Set Theory. Mathematical Surveys and
Monographs 155, AMS.

[19] Y. Moschovakis Uniformization in a playful Universe. Bulletin of the
American Mathematical Society 77 (1971), no. 5, 731-736.

[20] P. Schlicht Thin Equivalence Relations and Inner Models. Annals of
Pure and Applied Logic 165 (2014), pp. 1577–1625

[21] J. Steel Projectively well-ordered Inner Models. Annals of Pure and Ap-
plied Logic, pp.77-104, 1995.

[22] J. Steel An Outline of Inner Model Theory. Handbook of Set Theory.
Springer.

54

	Introduction
	Preliminaries
	Notation
	The forcings which are used
	The ground model W of the iteration

	Main Proof
	Informal discussion of the idea
	-allowable Forcings
	Coding reals in inner models of W
	The Coding Forcing Pg(x,y,m)
	Allowable Forcings
	1-allowability
	-allowability

	Definition of the universe in which the 13 uniformization property holds

	Forcing over canonical inner models with Woodin cardinals
	Coding over M1
	Forcing over Mn

	Further possible applications and open problems

